
Encryption and authentication in PHP 71
by Enrico Zimuel

Encryption is an important aspect of many software applications. Today, most of the web
sites store sensitive data like credit card numbers and user's passwords.
In this article I will explain how to encrypt and authenticate sensitive data using PHP 7, the
last release of PHP that offers new security features.

Encryption is not enough
An encryption algorithm works with a secret key that is used to decrypt a message.
Encryption provides confidentiality, that means only the authorized persons (the owners of
the secret key) have access to the information.

Encryption does not provide integrity and authenticity assurance on the data. Anyone can
falsify an encrypted message without any evidence of the alteration. For instance, Bob
encrypts a message using the Advanced Encryption Algorithm (AES) with a 256 bit key. Bob
wants to send the message to Alice that has the decryption key. Mallory, a malicious
attacker, intercept the message and alter the content. Alice tries to decrypt the message,
obtaining another message; she cannot prove that the message has been altered and that it
comes from Bob.

Encryption is not enough. We need to provide authentication. We have to protect the
encrypted message from tampering and we want to be sure that the message has been
encrypted by authorized users.

Moreover, there are many cryptographic attacks on encryption algorithms without
authentication. For instance, the padding oracle attack performed using the padding of a
cryptographic message. This attack is critical in many use cases, for instance in the CBC
encryption mode it can recover the encryption key in a few seconds! The original attack was
published in 2002 by Serge Vaudenay. The attack was applied to several web frameworks,
including JavaServer Faces, Ruby on Rails and ASP.NET. In order to prevent this attack we
need to add an authentication layer.

To provide authentication we have two options: use the encrypt-then-authenticate approach,
that adds the authentication after the encryption, or use an authenticated encryption
algorithm that offers authentication built-in.

Authenticated encryption is available from PHP 7.1 using the OpenSSL extension of PHP. If
you are using PHP 7.0 or less, you can use the encrypt-then-authenticate approach,
presented in the next section.

1 Article published in Software Developer’s Journal, Vol 6. No 2, Issue Feb 2017. ISSN 1734-3933

https://www.zimuel.it/
http://php.net/manual/en/migration70.new-features.php
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CBC
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://www.usenix.org/legacy/event/woot10/tech/full_papers/Rizzo.pdf
http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
https://en.wikipedia.org/wiki/Authenticated_encryption
https://www.openssl.org/

Encrypt-then-authenticate
In encrypt-then-authenticate we apply the encryption first and than the authentication. For
authenticate a message, we can use an HMAC function.

HMAC is a keyed-Hash Message Authentication Code used to generate the hash of a
message providing a secret key. The function is defined by the following formula:

HMAC(K,m) = H((K' ⊕ opad) || H((K' ⊕ ipad) || m))

where H is a cryptographic hash function, K is the secret key, m is the message to be
authenticated, K' is another secret key, derived from the original key K (by padding K to the
right with extra zeros to the input block size of the hash function, or by hashing K if it is
longer than that block size), || denotes concatenation, ⊕ is the XOR operator, opad is the
outer padding (0x5c5c5c…5c5c, one-block-long hexadecimal constant), and ipad is the
inner padding (0x363636…3636, one-block-long hexadecimal constant).

The secret key K should be different from the encryption key. This can improve the security
of the system. Typically, we can generate the encryption and the authentication keys starting
from a user's password using a Key Derivation Function (KDF). One of the most used
algorithm is PBKDF2 a PKCS #5 v2.0 standard and RFC 2898.

PHP offers PBKDF2 a built-in function hash_pbkdf2(). Here is reported an example:

$password = 'supersecretpassword';
$salt = random_bytes(16);
$hash = hash_pbkdf2("sha256", $password, $salt, 20000);
var_dump($hash);

In this example, the hash_pbkdf2() function generates the output using the hash function
SHA-256 iterated 20,000 times. The function requires a random salt value that is very
important for the security of the algorithm. We used the random_bytes() function of PHP 7
that generates cryptographically secure pseudo-random bytes.

Note: for cryptographic purposes never use rand() or mt_rand() functions of PHP.

The output of the PBKDF2 is a string of 32 bytes in hex format (64 characters). If you want a
binary string with a different size you have to specify two additional parameters. For
instance, if you need an hash value of 128 bytes in binary format you can use the following
syntax:

$hash = hash_pbkdf2("sha256", $password, $salt, 20000, 128, true);

The number of rounds of the hash function (20,000 in our example) is a very important
parameter for the security of the algorithm. We used the value 20,000 that can be
considered enough for many web applications. You should use always the maximum number

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/PBKDF2
https://tools.ietf.org/html/rfc2898
http://php.net/manual/en/function.hash-pbkdf2.php
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://php.net/manual/en/function.random-bytes.php
http://php.net/manual/en/function.rand.php
http://php.net/manual/en/function.mt-rand.php

of rounds which is tolerable, performance-wise in your application. Here you can have more
information about this parameter. For instance, LastPass uses 100,000 rounds to generate a
server-side password.

Now that we know how to authenticate a message and how to generate keys, we can use
the HMAC and the PBKDF2 functions. Below is a PHP example of encrypt-then-authenticate
using AES-256 for encryption and HMAC-SHA256 for authentication. We used OpenSSL for
the encryption part.

function encrypt(string $text, string $key): string {
$iv = random_bytes(16); // iv size for aes-256-cbc
$keys = hash_pbkdf2('sha256', $key, $iv, 20000, 64, true);
$encKey = mb_substr($keys, 0, 32, '8bit');
$hmacKey = mb_substr($keys, 32, null, '8bit');

$ciphertext = openssl_encrypt(
$text,
'aes-256-cbc',
$encKey,
OPENSSL_RAW_DATA,
$iv

);

$hmac = hash_hmac('sha256', $iv . $ciphertext, $hmacKey);
return $hmac . $iv . $ciphertext;

}

The output of this function is the concatenation of the HMAC hash ($hmac), the random IV
($iv) and the encrypted message ($ciphertext). All these are needed for the decryption.

function decrypt(string $text, string $key): string {
$hmac = mb_substr($text, 0, 64, '8bit');
$iv = mb_substr($text, 64, 16, '8bit');
$ciphertext = mb_substr($text, 80, null, '8bit');

$keys = hash_pbkdf2('sha256', $key, $iv, 20000, 64, true);
$encKey = mb_substr($keys, 0, 32, '8bit');
$hmacKey = mb_substr($keys, 32, null, '8bit');
$hmacNow = hash_hmac('sha256', $iv . $ciphertext, $hmacKey);
if (! hash_equals($hmac, $hmacNow)) {

throw new Exception('Authentication error!');
}
return openssl_decrypt($ciphertext, 'aes-256-cbc', $encKey,

OPENSSL_RAW_DATA, $iv
);

}

http://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pkbdf2-sha256
https://blog.lastpass.com/2011/05/lastpass-security-notification.html/

Before decrypting the data, we test the authentication using the hash_equals() function of
PHP. This function can be used to prevent timing attacks.

There are many PHP libraries offering encrypt-then-authenticate, for instance:
● paragonie/halite
● defuse/php-encryption
● zendframework/zend-crypt

Full disclosure: I'm the author of zendframework/zend-crypt library.

Authenticated encryption
Starting from PHP 7.1 we can use the authenticated encryption modes included in the
OpenSSL extension. We can use two encryption modes: GCM and CCM.

The OpenSSL extension provides two functions to encrypt and decrypt a message. These
functions are openssl_encrypt() and openssl_decrypt().

PHP 7.1 introduced some additional parameters to these functions for the authenticated
encryption usage.

string openssl_encrypt(
string $data,
string $method,
string $password,
[int $options = 0],
[string $iv = ""],
[string &$tag = NULL],
[string $aad = ""],
[int $tag_length = 16]

)
string openssl_decrypt(

string $data,
string $method,
string $password,
[int $options = 0],
[string $iv = ""],
[string $tag = ""],
[string $aad = ""]

)

The authentication hash is stored in the $tag variable. This value is passed by reference to
the openssl_encrypt() function.
The other optional parameter $aad represents additional authentication data that you could
use to protect the message against alterations, without encrypting it. For instance, if you
need to encrypt an email leaving the header information in plaintext, like the sender and the
receiver, you can pass the header in $aad.

http://php.net/manual/en/function.hash-equals.php
https://en.wikipedia.org/wiki/Timing_attack
https://github.com/paragonie/halite
https://github.com/defuse/php-encryption
https://github.com/zendframework/zend-crypt
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/CCM_mode
http://php.net/manual/en/function.openssl-encrypt.php
http://php.net/manual/en/function.openssl-decrypt.php

The last optional parameter $tag_length is the length in bytes of the hash value, that is 16
by default. In GCM mode, the tag length can be between 4 and 16 bytes. CCM has no limits
of tag's length and also the resulting tag is different for each length.

To decrypt an authenticated message, you need to pass the $tag value to
openssl_decrypt() and optionally the additional authenticated data ($aad).

Galois/Counter Mode (GCM)
The Galois/Counter Mode (GCM) is a mode of operation for symmetric key cryptographic
block ciphers that provides encryption and authentication.

The algorithm works as follow:
● the message is divided into blocks numbered sequentially;
● each block number is encrypted using a cipher, usually AES;
● the result of the encryption is xored with the block message;
● the encrypted block is xored with a Galois Mult function for authentication;
● the authentication tag is then generated with a couple of last xor, using:

○ the size of the ciphertext concatenated with the size of authentication;
○ a Galois Mult function xored with the first encrypted block number.

In Figure 1 is reported a diagram that explains the single steps of GCM mode.

Figure 1: GCM encryption mode (Source: Wikipedia)

This algorithm is used in many applications like IPsec, SSH and TLS 1.2. Used together with
AES (AES-GCM) is included in the NSA Suite B Cryptography. GCM is very fast because
the execution can be parallelized. Moreover, the algorithm does not have any patents and
can be used without restrictions.

Starting from PHP 7.1 the GCM mode is supported by OpenSSL extension. You can check if
the mode is available on your system using the openssl_get_cipher_methods() function. The
GCM mode is reported as "-gcm" or "-GCM" string at the end of a cipher name. You need to
have at least OpenSSL 1.1 to support this algorithm.

Below is reported an example to encrypt and decrypt a message using 'aes-256-gcm'
algorithm (i.e. AES with 256 bit key in GCM mode):

$algo = 'aes-256-gcm';
$iv = random_bytes(openssl_cipher_iv_length($algo));
$key = random_bytes(32); // 256 bit
$msg = random_bytes(1024); // random message, 1 Kb

$ciphertext = openssl_encrypt(
$msg,
$algo,
$key,
OPENSSL_RAW_DATA,
$iv,
$tag

);

$decrypt = openssl_decrypt(
$ciphertext,
$algo,
$key,
OPENSSL_RAW_DATA,
$iv,
$tag

);

if (false === $decrypt) {
throw new Exception(sprintf(
"OpenSSL error: %s", openssl_error_string()
));

}
printf ("Decryption %s\n", $msg === $decrypt ? 'Ok' : 'Failed');

The authentication tag generated by openssl_encrypt() is stored in $tag passed by
reference in the function. This value and the Initialization Vector ($iv) should be stored
together with the encrypted part ($ciphertext). In fact, in order to decrypt we need to pass
$iv and $tag to openssl_decrypt() function.

https://en.wikipedia.org/wiki/NSA_Suite_B_Cryptography
http://php.net/manual/en/function.openssl-get-cipher-methods.php
http://php.net/manual/en/function.openssl-decrypt.php

If the ciphertext has been altered, the decrypt function is able to recognize it because the
authentication fails. This will generate a false result that can be intercepted, obtaining more
information using openssl_error_string() function.

The GCM mode offers also additional authenticated data that you can pass to the encrypt
function. This data will not be encrypted and used only for authentication. For instance, if we
need to send an encrypted email, we can use the sender and recipient as additional
authenticated data. These data should be sent in plaintext, to allow the routing of the email,
but the rest of the information can be encrypted.

We can pass additional authenticated data using the $aad parameter of openssl_encrypt()
function. Below is reported an example:

$algo = 'aes-256-gcm';
$iv = random_bytes(openssl_cipher_iv_length($algo));
$key = random_bytes(32); // 256 bit
$email = 'This is the secret message!';
$aad = 'From: foo@domain.com, To: bar@domain.com';
$ciphertext = openssl_encrypt(

$email,
$algo,
$key,
OPENSSL_RAW_DATA,
$iv,
$tag,
$aad

);

$decrypt = openssl_decrypt(
$ciphertext,
$algo,
$key,
OPENSSL_RAW_DATA,
$iv,
$tag,
$aad

);
if (false === $decrypt) {

throw new Exception(sprintf(
"OpenSSL error: %s", openssl_error_string()
));

}
printf ("Decryption %s\n", $email === $decrypt ? 'Ok' : 'Failed');

The encrypted message, using additional authenticated data, is composed by $tag . $iv .
$aad . $ciphertext. Basically, you need to store also the $aad in plaintext, to be able to
perform the authentication during the decryption of the message.

http://php.net/manual/en/function.openssl-error-string.php

Counter with CBC-MAC (CCM)
Counter with CBC-MAC (CCM) is another authenticated encryption mode for symmetric
block ciphers with a block length of 128 bits.
CCM mode combines the CBC-MAC for authentication and the Counter CTR mode for
encryption.

The CCM mode is used in many applications like IPsec and TLS 1.2 and is part of the IEEE
802.11i standard. CCM is an alternative implementation of the OCB mode that was originally
covered by patents. The CCM can be used without any restriction.

This encryption mode can be used in PHP 7.1 if the OpenSSL extension installed shows the
"-ccm" or "-CCM" string in the name of the algorithm.

The previous example code for GCM works also for CCM, you need only to replace the first
line with :

$algo = 'aes-256-ccm';

GCM vs. CCM
If we compare GCM vs. CCM from a security point of view they are equivalent. Until now, no
critical attack has been found on these encryption modes.
From a performance point of view after some benchmark tests that I did on PHP 7.1, I can
say that GCM is 3x faster than CCM.

If you are using PHP 7.1, I suggest using GCM mode as an encryption algorithm.

Conclusion
In this article, I showed the importance to guarantee authentication and not just encryption to
sensitive data. I showed some examples in PHP 7. If you are using PHP 7.0 (or PHP 5.5+)
you can use the *encrypt-then-authenticate* approach with some of the libraries such as
paragonie/halite, defuse/php-encryption, zendframework/zend-crypt.
If you can upgrade to PHP 7.1 you can benefit from the usage of authenticated encryption
using GCM or CCM mode of OpenSSL. For performance reasons, I suggest using the GCM
mode that is 3x faster than CCM.

https://en.wikipedia.org/wiki/CCM_mode
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
https://en.wikipedia.org/wiki/IEEE_802.11i-2004
https://en.wikipedia.org/wiki/IEEE_802.11i-2004
https://en.wikipedia.org/wiki/OCB_mode
https://gist.github.com/ezimuel/485eb4745b58b30a2435bd92bdffb19f
https://github.com/paragonie/halite
https://github.com/defuse/php-encryption
https://github.com/zendframework/zend-crypt

