
Monitoring a PHP application
with OpenTelemetry
Enrico Zimuel, Principal Software Engineer

May 19, 2023 - phpDay Verona (Italy)

https://2023.phpday.it/

Summary

● Observability
● OpenTelemetry
● Signals: traces, metrics, log, baggage
● Collector
● Context propagation
● How to instrument a PHP application
● Manual instrumentation
● Automatic instrumentation

Observability

● Observability lets us understand a system from the outside
● We can observe the output of a system but this is not enough for

understanding what is going on inside
● We need to instrument our application to emit signals
● Monitoring is not observability:
○ “Monitoring tells you whether a system is working, observability

lets you ask why it isn't working” Baron Schwartz

https://orangematter.solarwinds.com/2017/09/14/monitoring-isnt-observability/

Three pillars of observability

Source: Observability with the Elastic Stack

https://www.elastic.co/blog/observability-with-the-elastic-stack

OpenTelemetry

● OpenTelemetry also known as OTel for short, is a
vendor-neutral open-source Observability
framework for instrumenting generating,
collecting, and exporting telemetry data such as
traces, metrics, logs

● Cloud Native Computing Foundation (CNCF)
incubating project

● Natively supported by multiple vendors (including
Elastic)

https://opentelemetry.io/
https://www.cncf.io/
https://opentelemetry.io/ecosystem/vendors/

Signals

● Signals are the different types of data sent by an application to inform
about the execution

● An application can emit the following signals:
○ Traces
○ Metrics
○ Logs

Traces

● A trace is a collection of information within a time frame
● A trace contains one or more span
● A span represents a unit of work or operation
● Spans are the building blocks of traces
● A span contains the following information:

○ Name, span ID, trace ID
○ Parent span ID (empty for root spans)
○ Start and End Timestamps
○ Span Context
○ Attributes
○ Events, Links, Status

Trace and spans
time

trace

spans

Metrics

● A metric is a measurement about a service, captured at runtime
● Application and request metrics are important indicators of availability

and performance
● Custom metrics can provide insights into how availability indicators

impact user experience or the business
● Collected data can be used to alert of an outage or trigger scheduling

decisions to scale up a deployment automatically upon high demand.

Different metrics

● Counter: A value that accumulates over time
● Asynchronous Counter: same as the Counter, but is collected once

for each export.
● UpDownCounter: A value that accumulates over time, but can also go

down again.
● Asynchronous UpDownCounter: Same as the UpDownCounter, but is

collected once for each export.
● Gauge: Measures a current value at the time it is read (asynchronous)
● Histogram: A histogram is a client-side aggregation of values, e.g.,

request latencies (e.g., How many requests take fewer than 1s?)

Logs

● A log is a timestamped text record, structured or unstructured, with
metadata

● While logs are an independent data source, they may also be attached
to spans

● In OpenTelemetry, any data that is not part of a distributed trace or a
metric is a log

Collector

● OTel collector is a vendor-agnostic implementation of how to receive,
process and export telemetry data

● It removes the need to run, operate, and maintain multiple
agents/collectors

● Designed to scale and supports open source observability data
formats sending to one or more open source or commercial back-ends

● The local Collector endpoint (localhost:4317/8) is the default location
to which Otel SDK libraries export their telemetry data

● open-telemetry/opentelemetry-collector written in Go

https://github.com/open-telemetry/opentelemetry-collector

OTel collector diagram

OTel collector and back-end

Collector configuration

● OTel collector can be configure using a YAML file

receivers:

 otlp:

 protocols:

 grpc:

 http:

processors:

 batch:

exporters:

 otlp:

 endpoint: otelcol:4317

 otlp/2:

 endpoint: otelcol2:4317

...

Microservices observability

● How to observe an application in a microservice/distributed
architecture?

Context propagation

● Context propagation is the core concept that enables Distributed
Tracing

● Spans can be correlated with each other and assembled into a trace
● Context Propagation is defined by two sub-concepts: Context and

Propagation
○ Context: an object that contains the information for the sending and

receiving service to correlate one span with another and associate it
with the trace overall

○ Propagation: is the mechanism that moves Context between
services and processes. It uses W3C TraceContext

https://www.w3.org/TR/trace-context/

W3C TraceContext

Elastic Service Map

Baggage

● Baggage is contextual information that’s passed between spans
● It’s a key-value store that resides alongside span context in a trace,

making values available to any span created within that trace
● OpenTelemetry uses Context Propagation to pass Baggage around
● Baggage should be used for data that you’re okay with potentially

exposing to anyone who inspects your network traffic

Baggage: example

OTLP

● OpenTelemetry Protocol (OTLP) describes the encoding, transport,
and delivery mechanism of telemetry data between telemetry
sources, intermediate nodes such as collectors, and telemetry
backends

● It supports the following transports:
○ OTLP/gRPC, gRPC and HTTP/1.1 transports and specifies Protocol

Buffers schema that is used for the payloads
○ OTLP/HTTP, use HTTP/2 or HTTP/1.1 and Protobuf payloads

encoded either in binary format or in JSON format

https://grpc.io/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview

OTel and PHP

OTel and PHP

● OTel provides a PHP SDK open-telemetry/opentelemetry-php
● Contains:
○ API interfaces for OTel implementation
○ Library for manual instrumentation (PHP 7.4+)
○ PHP extensions for auto-instrumentation (PHP 8.0+)
○ Exporters (for sending signals to different backends)
○ Auto-instrumentation modules (eg. WordPress, Laravel)

● Supports:
○ Traces (beta)
○ Metrics (beta)
○ Logs (alpha)

https://github.com/open-telemetry/opentelemetry-php
https://github.com/opentelemetry-php/api
https://github.com/opentelemetry-php/sdk
https://github.com/open-telemetry/opentelemetry-php-instrumentation
https://packagist.org/search/?query=open-telemetry&tags=exporter
https://packagist.org/search/?query=open-telemetry&tags=instrumentation

Requirements

● The OTel for PHP uses HTTP factories (PSR-17) and
php-http/async-client

● We need to choose an async HTTP client, for instance:
○ composer require php-http/guzzle7-adapter

● PHP extensions:
○ ext-grpc, required for the OTLP exporter
○ ext-mbstring, better performance for byte string
○ ext-zlib, compress the exported data
○ ext-ffi, Fiber based context storage
○ ext-protobuf, significant performance improvement for OTLP

https://www.php-fig.org/psr/psr-17/
https://docs.php-http.org/en/latest/clients.html
https://github.com/php-http/guzzle7-adapter
https://github.com/grpc/grpc/tree/master/src/php
https://www.php.net/manual/en/book.mbstring.php
https://www.php.net/manual/en/book.zlib.php
https://www.php.net/manual/en/book.ffi.php
https://github.com/protocolbuffers/protobuf/tree/main/php

Manual instrumentation

● Install OTel SDK (enable "minimum-stability": "beta" in composer):
○ composer require open-telemetry/sdk

● Choose an Exporter
● Create a TracerProvider
● Create a rootSpan
● Create spans, metrics and logs

Example: TraceProvider with console exporter
use OpenTelemetry\SDK\Trace\SpanExporter\ConsoleSpanExporterFactory;

use OpenTelemetry\SDK\Trace\SpanProcessor\SimpleSpanProcessor;

use OpenTelemetry\SDK\Trace\TracerProvider;

$tracerProvider = new TracerProvider(

 new SimpleSpanProcessor(

 (new ConsoleSpanExporterFactory())->create()

)

);

$tracer = $tracerProvider->getTracer('io.opentelemetry.contrib.php');

$rootSpan = $tracer->spanBuilder('root')->startSpan();

$rootScope = $rootSpan->activate();

// create spans, metrics, logs

$rootSpan->end();

$rootScope->detach();

Example: TraceProvider with OTel exporter
use OpenTelemetry\Contrib\Otlp\OtlpHttpTransportFactory;

use OpenTelemetry\Contrib\Otlp\SpanExporter;

use OpenTelemetry\SDK\Trace\SpanProcessor\SimpleSpanProcessor;

use OpenTelemetry\SDK\Trace\TracerProvider;

$transport = (new OtlpHttpTransportFactory())->create(

 'http://collector:4318/v1/traces',

 'application/x-protobuf'

);

$exporter = new SpanExporter($transport);

$tracerProvider = new TracerProvider(

 new SimpleSpanProcessor(

 $exporter

)

);

Example: Span
$span = $tracer->spanBuilder("my span")->startSpan();

// Make the span the current span

try {

 $scope = $span->activate();

 // In this scope, the span is the current/active span

} finally {

 $span->end();

 $scope->detach();

}

Example: Nested Span

$parentSpan = $tracer->spanBuilder("parent")->startSpan();

$scope = $parentSpan->activate();

try {

 $child = $tracer->spanBuilder("child")->startSpan();

 //do stuff

 $child->end();

} finally {

 $parentSpan->end();

 $scope->detach();

}

Example: Metric
$reader = new ExportingReader((new ConsoleMetricExporterFactory())->create());

$meterProvider = MeterProvider::builder()

 ->addReader($reader)

 ->build();

$up_down = $meterProvider

 ->getMeter('my_up_down')

 ->createUpDownCounter('queued', 'jobs', 'The number of jobs enqueued');

//jobs come in

$up_down->add(2);

//job completed

$up_down->add(-1);

//more jobs come in

$up_down->add(2);

$meterProvider->forceFlush();

Example: Log

use OpenTelemetry\API\Common\Log\LoggerHolder;

$logger = new Psr3Logger(LogLevel::INFO);

LoggerHolder::set($logger);

● OpenTelemetry can be configured to use a PSR-3 logger to log
information about OpenTelemetry, including errors and warnings
about misconfigurations or failures exporting data:

https://www.php-fig.org/psr/psr-3/

Auto-instrumentation

● Install open-telemetry/opentelemetry-php-instrumentation ext:
○ Pecl:
■ pecl install opentelemetry-beta

○ Pickle:
■ php pickle.phar install --source

https://github.com/open-telemetry/opentelemetry-php-instrumen
tation.git#1.0.0beta5

○ Docker:
■ install-php-extensions opentelemetry

https://github.com/open-telemetry/opentelemetry-php-instrumentation

Example
OpenTelemetry\Instrumentation\hook(

 'class': DemoClass::class,

 'function': 'run',

 'pre': static function () use ($tracer) {

 // pre code here

 },

 'post': static function () use ($tracer) {

 // post code here

 }

);

$demo = new DemoClass();

$demo->run();

Example: pre

'pre': static function (DemoClass $demo, array $params, string $class,

 string $function, ?string $filename, ?int $lineno) use ($tracer) {

 static $instrumentation;

 $instrumentation ??= new CachedInstrumentation('example');

 $span = $instrumentation->tracer()->spanBuilder($class)->startSpan();

 Context::storage()->attach($span->storeInContext(Context::getCurrent()));

}

Example: post
'post': static function (

 DemoClass $demo,

 array $params,

 $returnValue,

 ?Throwable $exception) use ($tracer) {

 $scope = Context::storage()->scope();

 $scope->detach();

 $span = Span::fromContext($scope->context());

 if ($exception) {

 $span->recordException($exception);

 $span->setStatus(StatusCode::STATUS_ERROR);

 }

 $span->end();

 }

References

● Bahubali Shetti, Independence with OpenTelemetry on Elastic
● Neha Duggal, Elastic introduces OpenTelemetry integration
● Elastic Observability and Security Teams, Elastic Common Schema and

OpenTelemetry — A path to better observability and security with no vendor
lock-in

● David Hope, Monitor OpenAI API and GPT models with OpenTelemetry and
Elastic

● Ty Bekiares, Modern observability and security on Kubernetes with Elastic
and OpenTelemetry

● Adam Quan, Distributed tracing, OpenTracing, and Elastic APM, webinar

https://www.elastic.co/blog/opentelemetry-observability
https://www.elastic.co/blog/elastic-apm-opentelemetry-integration
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-faq
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-faq
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-faq
https://www.elastic.co/blog/monitor-openai-api-gpt-models-opentelemetry-elastic
https://www.elastic.co/blog/monitor-openai-api-gpt-models-opentelemetry-elastic
https://www.elastic.co/blog/implementing-kubernetes-observability-security-opentelemetry
https://www.elastic.co/blog/implementing-kubernetes-observability-security-opentelemetry
https://www.elastic.co/webinars/distributed-tracing-opentracing-and-elastic-apm

Thanks!
More information about OpenTelemetry
and the Elastic initiative about OTel

Contacts: enrico.zimuel@elastic.co

https://opentelemetry.io/
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-announcement

