) elasti
eaS |C

Monitoring a PHP application
with OpenTelemetry

Enrico Zimuel, Principal Software Engineer

May 19, 2023 - Verona (ltaly)

/ .
/
Y

https://2023.phpday.it/

Summary

e Observabillity

e OpenTelemetry

e Signals: traces, metrics, log, baggage
e Collector

e Context propagation

e How to instrument a PHP application
e Manual instrumentation

e Automatic instrumentation

%@ elasti
@? elastic

Observability

e Observability lets us understand a system from the outside
e \We can observe the output of a system but this is not enough for
understanding what is going on inside
e \We need to instrument our application to emit signals
e Monitoring is not observability:
o “Monitoring tells you whether a system is working, observability
lets you ask why it isn't working” Baron Schwartz

%@ elasti
@? elastic

https://orangematter.solarwinds.com/2017/09/14/monitoring-isnt-observability/

Three pillars of observability

OBSERVABILITY j
s

Metrics

iz L L

& ti
2 elastic

https://www.elastic.co/blog/observability-with-the-elastic-stack

OpenTelemetry

e OpenTelemetry also known as OTel for short, is a
vendor-neutral open-source Observability
framework for instrumenting generating,
collecting, and exporting telemetry data such as
traces, metrics, logs

e Cloud Native Computing Foundation (CNCF)
Incubating project

e Natively supported by multiple vendors (including
Elastic)

‘ ‘ nTelemetry

%@ elasti
@? elastic

https://opentelemetry.io/
https://www.cncf.io/
https://opentelemetry.io/ecosystem/vendors/

Signals

e Signals are the different types of data sent by an application to inform

about the execution
e An application can emit the following signals:
o Traces
o Metrics
o Logs

%@ elasti
@? elastic

Traces

A trace is a collection of information within a time frame
A trace contains one or more span

A span represents a unit of work or operation

Spans are the building blocks of traces

A span contains the following information:

o Name, span ID, trace ID

Parent span ID (empty for root spans)
Start and End Timestamps

Span Context

Attributes

Events, Links, Status

O O O O O

%@ elasti
@? elastic

Trace and spans

time

trace

spans

e .
% elastic

Metrics

e A metric is a measurement about a service, captured at runtime

e Application and request metrics are important indicators of availability
and performance

e Custom metrics can provide insights into how availability indicators
Impact user experience or the business

e Collected data can be used to alert of an outage or trigger scheduling
decisions to scale up a deployment automatically upon high demand.

%@ elasti
@? elastic

Different metrics

e Counter: A value that accumulates over time

e Asynchronous Counter: same as the Counter, but is collected once
for each export.

e UpDownCounter: A value that accumulates over time, but can also go
down again.

e Asynchronous UpDownCounter: Same as the UpDownCounter, but is
collected once for each export.

e Gauge: Measures a current value at the time it is read (asynchronous)

e Histogram: A histogram is a client-side aggregation of values, e.g.,
request latencies (e.g., How many requests take fewer than 1s?)

%@ elasti
@? elastic

Logs

e Alog is atimestamped text record, structured or unstructured, with
metadata

e While logs are an independent data source, they may also be attached
to spans

e In OpenTelemetry, any data that is not part of a distributed trace or a
metric is a log

%@ elasti
@? elastic

Collector

e OTel collector is a vendor-agnostic implementation of how to receive,
process and export telemetry data

e |t removes the need to run, operate, and maintain multiple
agents/collectors

e Designed to scale and supports open source observability data
formats sending to one or more open source or commercial back-ends

e The local Collector endpoint (localhost:4317/8) is the default location
to which Otel SDK libraries export their telemetry data

e open-telemetry/opentelemetry-collector written in Go

%@ elasti
@? elastic

https://github.com/open-telemetry/opentelemetry-collector

OTel collector diagram

D
’@gl Otel Collector

OTLP ~y

Extensions: health, pprof, zpages &
| m
=
T
e
o
@

— Batch — - ~ Attributes

ﬁ JE3F Processors - ﬁ
Jaeger o Jaeger
-
g — Batch == 2 == Filter = o=
;

Prometheus Prometheus

=
(203

Processors

""o elastic

OTel collector and back-end

Time Series
Databases

Microservices

E App Code
OTel Auto. Inst.
OTel API

OTel SDK

Trace Observability

Databases Frontends
& APls

OTLP

(i.e. Elastic)

Column
Stores

|| Open Telemetry Standard

1 Your choice (example: Elastic)

""9 elastic

Collector configuration

e OTel collector can be configure using a YAML file

%@ elasti
@? elastic

Microservices observability

e How to observe an application in a microservice/distributed

i+
I::I 1E

e .
% elastic

Context propagation

e Context propagation is the core concept that enables Distributed
Tracing
e Spans can be correlated with each other and assembled into a trace
e Context Propagation is defined by two sub-concepts: Context and
Propagation
o Context: an object that contains the information for the sending and
receiving service to correlate one span with another and associate it
with the trace overall
o Propagation: is the mechanism that moves Context between
services and processes. It uses W3C TraceContext

%@ elasti
@? elastic

https://www.w3.org/TR/trace-context/

W3C TraceContext

Service A

Parent Span
i~
Child Span |
| > Tag
Child Span
g] -
Tag Log

A | ‘ L

Network Call Service B
C/ . . .
Trace
Child Span
-------- -
Trace | | I
Context
Log Tag Log

Child Span
| -

\ Leg Leg

PHP service

OTel SDK

Headers Java service
e traceparent: 123abc
...others OTel SDK

...others

e .
%* elastic

Elastic Service Map

£

_— N
———— — AN
"\;»7 e ——————— S =
~— — S — - fe=_
. — e —— - -
. ~— —_— == = ——
e . ~

N\ ~ ~
N - /

\
\ ><
\ . 7 .
\ \\ / ~— |
\. . S |
\ N - S ’
X N ~a T
\ N - —— |
\\ s
\ 2 = ~—
A > = /
S e —
"_. e > G .
x =D e ——— — ~ . / - —— -
"’\1 s ~ S
N s~ N / —~
\ ~—— —— / T —
e —

\ \\ — - ‘

opbeans-dotnet ——— P
\
\\

\ opbeans-java

\

\ ‘\‘ ~ \‘\\\> . S - ;\“'«\1\ ’ - = 1 B \\) ~— \\‘ ‘V
\) T T opbeans-node ™\ T
, | p

example.com:80

>

postgresq|

e .
% elastic

Baggage

e Baggage is contextual information that’s passed between spans

e |t's a key-value store that resides alongside span context in a trace,
making values available to any span created within that trace

e OpenTelemetry uses Context Propagation to pass Baggage around

e Baggage should be used for data that you're okay with potentially
exposing to anyone who inspects your network traffic

%@ elasti
@? elastic

Baggage: example

/ account / 123 / order / 456

l

>

Checkout

/ product / 323 / stock

REQUEST

Validate

Database

= Path.Segment[1]

Stock

REQUEST

Validate

Database

L

Database

ACCOUNT ID =iy

%@ elasti
@? elastic

OTLP

e OpenTelemetry Protocol (OTLP) describes the encoding, transport,
and delivery mechanism of telemetry data between telemetry
sources, intermediate nodes such as collectors, and telemetry
backends

e |t supports the following transports:

o OTLP/gRPC, gRPC and HTTP/1.1 transports and specifies Protocol
Buffers schema that is used for the payloads

o OTLP/HTTP, use HTTP/2 or HTTP/1.1 and Protobuf payloads
encoded either in binary format or in JSON format

%@ elasti
@? elastic

https://grpc.io/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview

OTel and PHP

OTel and PHP

e OTel provides a PHP SDK open-telemetry/opentelemetry-php
e Contains:

o APl interfaces for OTel implementation
Library for manual instrumentation (PHP 7.4+)
PHP extensions for auto-instrumentation (PHP 8.0+)
Exporters (for sending signals to different backends)
o Auto-instrumentation modules (eg. WordPress, Laravel)

e Supports:

o Traces (beta)
o Metrics (beta)
o Logs (alpha)

O O O

e .
% elastic

https://github.com/open-telemetry/opentelemetry-php
https://github.com/opentelemetry-php/api
https://github.com/opentelemetry-php/sdk
https://github.com/open-telemetry/opentelemetry-php-instrumentation
https://packagist.org/search/?query=open-telemetry&tags=exporter
https://packagist.org/search/?query=open-telemetry&tags=instrumentation

Requirements

e The OTel for PHP uses HTTP factories (PSR-17) and
php-http/async-client
e We need to choose an async HTTP client, for instance:
o composer require php-http/quzzle/-adapter
e PHP extensions:
o ext-arpc, required for the OTLP exporter
ext-mbstring, better performance for byte string
ext-zlib, compress the exported data

ext-ffi, Fiber based context storage
ext-protobuf, significant performance improvement for OTLP

O O O O

% elasti
9 elastic

https://www.php-fig.org/psr/psr-17/
https://docs.php-http.org/en/latest/clients.html
https://github.com/php-http/guzzle7-adapter
https://github.com/grpc/grpc/tree/master/src/php
https://www.php.net/manual/en/book.mbstring.php
https://www.php.net/manual/en/book.zlib.php
https://www.php.net/manual/en/book.ffi.php
https://github.com/protocolbuffers/protobuf/tree/main/php

Manual instrumentation

e Install OTel SDK (enable "minimum-stability": "beta" in composer):
o composer require open-telemetry/sdk

Choose an Exporter

Create a TracerProvider

Create a rootSpan

Create spans, metrics and logs

%@ elasti
@? elastic

Example: TraceProvider with console exporter

OpenTelemetry\SDK\Trace\Spankxporter\ConsoleSpankxporterFactory;

OpenTelemetry\SDK\Trace\SpanProcessor\SimpleSpanProcessor;

OpenTelemetry\SDK\Trace\TracerProvider;

StracerProvider = TracerProvider (
SimpleSpanProcessor (

(ConsoleSpanExporterFactory ()) —>create ()

) ;
Stracer = $tracerProvider->getTracer ('io.opentelemetry.contrib.php');
SrootSpan = Stracer->spanBuilder ('root')->startSpan();

SrootScope = $rootSpan->activate();

SrootSpan->end () ;

SrootScope->detach () ;

%@ elasti
@? elastic

Example: TraceProvider with OTel exporter

OpenTelemetry\Contrib\Otlp\OtlpHttpTransportFactory;
OpenTelemetry\Contrib\Otlp\SpanExporter;
OpenTelemetry\SDK\Trace\SpanProcessor\SimpleSpanProcessor;

OpenTelemetry\SDK\Trace\TracerProvider;

Stransport = (OtlpHttpTransportFactory())->create (
'http://collector:4318/v1/traces’',

'application/x-protobuf'

)

Sexporter = SpanExporter ($transport) ;

StracerProvider = TracerProvider (
SimpleSpanProcessor (

Sexporter

%@ elasti
@? elastic

Example: Span

Sspan = Stracer->spanBuilder () ->startSpan () ;

{

Sscope = S$span->activate();

{

Sspan->end () ;

Sscope->detach () ;

% o elasti
2 elastic

Example: Nested Span

SparentSpan = Stracer->spanBuilder ("parent")->startSpan() ;
Sscope = SparentSpan->activate();

{
Schild = S$tracer->spanBuilder ("child")->startSpan() ;

Schild->end () ;
{

SparentSpan->end () ;

Sscope->detach () ;

%@ elasti
@? elastic

Example: Metric

Sreader = ExportingReader ((ConsoleMetricExporterFactory ())—->create());
SmeterProvider = MeterProvider::builder ()
->addReader (Sreader)

—>pbuild() ;
Sup down = SmeterProvider

->getMeter ('my up down')

->createUpDownCounter ('queued', 'jobs', 'The number of jobs enqueued');
Sup down->add (2) ;
Sup down->add (-1) ;

Sup down->add(2) ;

SmeterProvider->forceFlush () ;

%@ elasti
‘.AEEHSIC

Example: Log

e OpenTelemetry can be configured to use a PSR-3 logger to log
iInformation about OpenTelemetry, including errors and warnings
about misconfigurations or failures exporting data:

OpenTelemetry\API\Common\Log\LoggerHolder;

Slogger = Psr3Logger (LogLevel: : INFO) ;

LoggerHolder: :set ($1logger) ;

%@ elasti
@? elastic

https://www.php-fig.org/psr/psr-3/

Auto-instrumentation

e Install open-telemetry/opentelemetry-php-instrumentation ext:
o Pecl:
m pecl install opentelemetry-beta
o Pickle:

m php pickle.phar install --source
https://github.com/open-telemetry/opentelemetry-php-instrumen
tation.qgit#1.0.0betas

o Docker:
m install-php-extensions opentelemetry

%@ elasti
@? elastic

https://github.com/open-telemetry/opentelemetry-php-instrumentation

Example

OpenTelemetry\Instrumentation\hook (

4

(Stracer) {

) ;
Sdemo =

Sdemo—->run () ;

%@ elasti
@? elastic

Example: pre

(Sdemo, Sparams,
sfunction, °? Sfilename, °? Slineno)
Sinstrumentation;

Sinstrumentation ?27?= () ;

Sspan = S$instrumentation->tracer ()->spanBuilder ($Sclass)->startSpan() ;

: :storage () —>attach ($span->storeInContext (: :getCurrent ()));

%@ elasti
@? elastic

Example: post

'post':
DemoClass S$Sdemo,
Sparams,
SreturnValue,
?Throwable S$exception) (Stracer) {
Sscope = Context::storage()->scopel():;
Sscope->detach () ;
Sspan = Span::fromContext ($scope->context ()) ;
(Sexception) {
Sspan->recordException (Sexception) ;
Sspan->setStatus (StatusCode: :STATUS ERROR) ;

}
Sspan->end () ;

%@ elasti
.,aeas IC

References

e Bahubali Shetti, Independence with OpenTelemetry on Elastic

e Neha Duggal, Elastic introduces OpenTelemetry integration

e Elastic Observability and Security Teams, Elastic Common Schema and
OpenTelemetry — A path to better observability and security with no vendor

lock-in

e David Hope, Monitor OpenAl APl and GPT models with OpenTelemetry and
Elastic

e Ty Bekiares, Modern observability and security on Kubernetes with Elastic
and OpenTelemetry

e Adam Quan, Distributed tracing, OpenTracing, and Elastic APM, webinar

e .
% elastic

https://www.elastic.co/blog/opentelemetry-observability
https://www.elastic.co/blog/elastic-apm-opentelemetry-integration
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-faq
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-faq
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-faq
https://www.elastic.co/blog/monitor-openai-api-gpt-models-opentelemetry-elastic
https://www.elastic.co/blog/monitor-openai-api-gpt-models-opentelemetry-elastic
https://www.elastic.co/blog/implementing-kubernetes-observability-security-opentelemetry
https://www.elastic.co/blog/implementing-kubernetes-observability-security-opentelemetry
https://www.elastic.co/webinars/distributed-tracing-opentracing-and-elastic-apm

Thanks!

More information about
and the about OTel

Contacts: enrico.zimuel@elastic.co

https://opentelemetry.io/
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-announcement

