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Abstract. We extend a recently proposed model checking-based algo-
rithm for the evaluation of XPath queries with a cache strategy to store
the results of the (most frequently) asked queries and to re-use them at
occurrence. We experimentally show that, as soon as the cache is warm,
the proposed optimization is quite effective. We complement our pro-
posal with a broad experimental comparison of different strategies for
XPath query processing.

1 Introduction

The XML Path Language version 1.0 (XPath, in the following), is a query lan-
guage for XML documents proposed in 1999 by the World Wide Web Con-
sortium(W3C) [1]. Compared to some later proposals of the W3C, like XPath
2.0 [2] and XQuery [3], the XPath language, and in particular its navigational
fragment, or Core XPath [4], is simple, clean, and intuitive. As a result, XPath
has become very popular among XML users and many software houses have
extended their products with XPath tools. Moreover, researchers in both the
computational logic and the database communities devised quite a large number
of solutions for the evaluation of XPath queries, including tree traversal meth-
ods [4–6], model checking-based methods [7–9], automata-based methods [10–
12], join-based methods [13–15], and sequence matching-based methods [16, 17].
However, we are aware of few papers that aim to compare the relative per-
formance of such algorithms ([18] compares join-based and sequence matching-
based methods, while [19] evaluates XML indexes for structural joins).

This paper gives two contributions. We extend the above list of evaluation
methods with a logic-based approach to answer XPath queries with the aid of
cache mechanisms. Moreover, we make a thorough experimental comparison of
the following four evaluation techniques for XPath:

TopXPath (Section 8.1 of [4]). The idea that lies behind this algorithm is to
rewrite the original query into a Boolean combination of filter-free paths (se-
quences of steps without filters). The evaluation of the filter-free path is per-
formed by reading the path string from left to right and sending the output of



the current step to the input of the next step, if any. For instance, consider the
query:

π[φ] = /child :: site/child :: regions[descendant :: item/following :: payment]

The method works in two phases. First, the query filter φ is rewritten by reading
it from right to left and inverting each axis. The inverted filter becomes:

ϕ = self :: payment/preceding :: item/ancestor :: ∗

Then, the above query is evaluated as π ∩ ϕ, that is, by taking the intersection
of the result of π (with the singleton containing the tree root as initial context
set) and the result of ϕ (with the set of all tree nodes as initial context set).

BottomXPath ([9]). The idea here is to rewrite the original query into a modal
formula and then evaluate the formula bottom-up, that is, each formula is evalu-
ated after the evaluation of its subformulas. As an example, consider again the
above query π[φ]. The corresponding modal formula is:

regions∧ 〈parent〉(site∧ 〈parent〉root)∧ 〈descendant〉(item∧ 〈following〉payment)

where tags are interpreted as atomic propositions (root is a propostion that is
true exactly at the tree root) and each axis is simulated by a corresponding
modality. The modal formula is evaluated bottom-up exploiting the fact that
the truth value of any subformula can be computed from the truth values of its
direct subformulas.1

CacheBottomXPath. This is a cache optimization of BottomXPath that we
propose and evaluate in this paper (see Section 2 for the details). The query is
first converted into a modal formula and then chopped into a set of subformulas.
Then, each subformula, in bottom-up order, is searched in the cache. If the
subformula is found, no evaluation is performed, since the result has been already
computed. Otherwise, the subformula is evaluated and its result is possibly stored
in the cache.

Arb ([12]). This is an automata-based method. The XML document is first
converted into a binary tree representation. Then, two deterministic binary tree
automata, one working bottom-up and the other one working top-down, are gen-
erated from the query. The actual evaluation is performed in two steps: (i) first,
the bottom-up query automaton runs on the XML binary tree; (ii) then, the
top-down query automaton runs on the XML binary tree enriched with infor-
mation computed during the bottom-up run. Finally, the entire XML document
is returned with selected nodes marked up in XML fashion.

An analysis of the worst-case computational complexity of the above four
methods does not help much to determine the most efficient evaluation strategy.
Let us focus on the navigational part of XPath known as Core XPath [4], which

1 This bottom-up principle holds for many modal and temporal logics. A notable
example is Computation Tree Logic (CTL), a popular specification language in the
context of formal verification of software and hardware systems [20].



is supported by all the above methods. Let k be the query complexity and n be
the data complexity. On Core XPath, the worst-case complexity of TopXPath,
BottomXPath, and CacheBottomXPath is O(k · n), while Arb terminates in
O(K +n), where K is an exponential function of k. A closer look inside the four
algorithms reveals the following. In order to solve a query of length k on a tree
of size n it happens that: (i) TopXPath visits each tree node a number of times
between 0 and k (each node might be visited a different number of times) (ii)
BottomXPath visits each tree node exactly k times; (iii) CacheBottomXPath
visits each node the same number of times between 0 and k and it spends extra
time proportional to the cache loading factor in order to search into the cache;
and (iv) Arb visits each tree node twice (independently on the query complexity)
and it spends extra time that might be exponential in k in order to build the
tree automata. All the algorithms spend a constant amount of time at each node
but BottomXPath (and its cache-based version) is particularly efficient since it
operates mostly on Boolean values.

To have a better understanding of the relative performance of the methods
under testing, we conducted a probing experimental evaluation on synthetic and
simulated real data. The main goals of our investigation are: (i) to understand
the effectiveness of the cache optimization introduced in CacheBottomXPath;
(ii) to compare the performance of the top-down and bottom-up approaches im-
plemented in TopXPath and BottomXPath, respectively, on randomly generated
data, and (iii) to test the scalability of the automata-based method encoded in
Arb when the query length grows. In particular, is the automata construction
step a bottleneck for query processing in Arb?

The rest of the paper is as follows. In Section 2 we review BottomXPath
and describe CacheBottomXPath. The results of our experimental evaluation
are discussed in Section 3. We conclude in Section 4.

2 XPath Evaluation Methods

Even if the algorithms mentioned in Section 1 work on, or can be easily extended
to, full XPath, we will evaluate them on the navigational fragment of XPath, or
Core XPath, that was defined in [4]. With respect to full XPath, this fragment
disallows the axes attribute and namespace, node tests different from a tag or
*, comparison operators and functions. What remains can be used to navigate
the XML tree only. The algorithms that we test essentially differ only on this
fragment.

As noticed in [21], Core XPath can be viewed as a Modal Logic, inter-
preted over tree structures, whose modalities behave like the XPath axes. Modal
Logic [22] extends Propositional Logic with modalities that, similarly to XPath
axes, are used to browse the underlying relational structure. Let Σ be a set
of proposition symbols. A formula in the multi-modal language is defined as
follows:

α = p | α ∧ α | α ∨ α | ¬α | 〈Ri〉α



where p ∈ Σ and 1 ≤ i ≤ c for some integer c ≥ 1. A multi-modal logic for
XPath contains a propositional symbol for each XML tag and a modality 〈X〉
for each XPath axis X. Modal formulas are interpreted at a given state of a given
model in the usual way [22]. E.g., 〈X〉α is true at state s iff there exists a state
t reachable from s through the relation X such that α is true at t. The truth set

of a formula α w.r.t. a model M is the set of states of M at which α is true.2

We refer to [4] (Section 8.1) and [12], respectively, for a complete description
of TopXPath and Arb. In the rest of this section, we review BottomXPath [9]
and we introduce CacheBottomXPath. BottomXPath inputs an XML tree T and
a Core XPath query q and returns the answer set for q with respect to T in the
following two steps:

BottomXPath(T, q)

1: translate q into a modal formula αq ;
2: retrieve the truth set of αq w.r.t. T ;

The translation of step 1 works as follows. Each tag is mapped to a corre-
sponding proposition symbol and * is mapped to the truth value true. Moreover,
a new proposition root is introduced to identify the tree root. The query path is
read from right to left and each axis (not belonging to a filter) is mapped to the
modality corresponding to the inverse of the axis. Finally, each query filter is
translated by reading it from left to right and by mapping each axis to the cor-
responding modality and each Boolean operator to the corresponding Boolean
connective. For instance, the query:

/child::a[parent::b/following::c]/descendant::d[preceding::e or not(following::*)]

is mapped to the formula:

d ∧ 〈ancestor〉(a ∧ 〈parent〉root ∧ 〈parent〉(b ∧ 〈following〉c))∧
(〈preceding〉e ∨ ¬〈following〉true)

The truth set of the resulting modal formula (step 2 of BottomXPath) is com-
puted by the procedure XPathCheck as follows. XPathCheck inputs an XML
tree T and an XPath modal formula α and returns the truth set for each sub-
formula of α (including α itself) in document order. The algorithm is similar
to the model checking procedure for the temporal logic CTL, a popular specifi-
cation language in the context of finite-state program verification [20]. We first
describe the data structures used by the algorithm. XPathCheck takes advan-
tage of a Boolean matrix A, where the rows represent formulas and the columns
represent nodes, in order to label nodes with formulas that are true at them.
Initially, each entry of A is set to 0. For each subformula of α numbered with i
and each node of T numbered with j, the procedure sets A[i, j] to 1 if and only
if the formula i is true at the node j. Moreover, XPathCheck stores the tree T
as a set of linked objects each of them representing a tree node. Each object
contains a field with the preorder rank of the node, a field containing the XML

2 In computational logic, the problem of finding the truth set of a formula is well-
known as the (global) model checking problem [20].



tag of the element that the node represents, and pointers to the parent, first
child, right and left siblings nodes. Finally, XPathCheck represents the formula
α as its parse tree PTα. Each node of PTα represents a subformula β of α and
it is stored as an object containing a field with the main operator of β, a field
containing the index of the corresponding row in A, and pointers (at most 2)
to the argument nodes of the main operator of β. It is convenient to insert in
A the subformulas of α in postorder with respect to a visit of PTα (so that the
subformulas of α can be scanned bottom-up) and the nodes of T in preorder
with respect to a visit of T (so that each truth set is sorted in document order).

XPathCheck works as follows. Given a tree T and a formula α, it processes
each subformula β of α by visiting the parse tree PTα in postorder. In this way,
each subformula of β is checked before β itself is verified. The verification of β
depends on the its main operator:

1. if β is root, then XPathCheck sets A(β, 1) to 1 (the first column of A is
associated to the tree root);

2. if β is *, then XPathCheck sets A(β, j) to 1 for each node j;
3. if β is a tag a, then XPathCheck sets A(β, j) to 1 for each node j tagged

with a;
4. if β is β1 ∧ β2, then, for each node j, XPathCheck sets A(β, j) to 1 if

A(β1, j) = 1 and A(β2, j) = 1 (and similarly for the disjunction and negation
cases)3;

5. if β is 〈X〉β1, then, for each node j, XPathCheck sets A(β, j) to 1 if there
exists a node k reachable from j trough the relation induced by X such that
A(β1, k) = 1.

The check of subformulas of the form 〈X〉β1 depends on the axis X. In gen-
eral, it is a tree searching algorithm that possibly labels nodes with 〈X〉β1. For
instance, if the axis is descendant, then the procedure first retrieves the nodes la-
belled with β1 and then it labels each ancestor of such nodes with 〈descendant〉β1

if the ancestor is not already labelled with it. Notice that, for each axis X, the
formula 〈X〉β1 can be checked by visiting each tree node only a constant number
of times, hence in linear time with respect to the number of nodes of the tree.
Moreover, most of the operations are performed on Boolean values. It follows
that XPathCheck runs in time proportional to the product of the formula length
and the XML tree size. Since the mapping from queries to formulas (step 1 of
BottomXPath) takes linear time and the resulting formulas have linear lengths
with respect to the lengths of the input queries, we can conclude that BottomX-
Path runs in O(k · n), where k is the query length and n is the XML tree size.

2.1 Cache Answerability for XPath Queries

BottomXPath repeats the computation of the truth set for each instance of the
same subformula. This can be avoided as follows. Both a formula cache M ,

3 Notice that the matrix entries for β1 and β2 are known when β is processed, since
β1 and β2 are subformulas of β and hence their postorder ranks in the parse tree are
smaller than the postorder rank of β.



storing the past formulas, and a truth set cache A, storing the truth sets for past
formulas, are maintained. When a new formula is checked, first the formula is
searched in M . If the formula is found, then no further processing is necessary.
Otherwise, the sub-formulas of the original formula that are not present in M
are added to M and their truth sets are computed and added to A.

We now describe the optimization in more detail. Consider a formula α. We
represent α with its parse tree PTα and the truth set cache with a Boolean matrix
A as described above. The new entry is the formula cache that is implemented
using a hash table M where the keys are the formula strings and the collision
resolution method is by chaining. Each object of the linked lists associated to
the hash table contains the formula string, the index of the corresponding row
in A, and the usual pointer to the next object in the list. The processing of α is
as follows: (a) the parse tree PTα is generated, (b) PTα is visited in postorder
and, for each node (subformula) x, the following steps are done:

1. the formula string s associated to x is built by visiting the tree rooted at x;
2. the string s is searched in the hash table M ;
3. if an object y with key s is found in M , then x is updated with the row index

of the matrix A corresponding to the formula s, which is read from y;
4. otherwise, a new row from A, say l, is assigned to the formula s, a new

object for s is inserted in the hash table with the row index l, the object x
is updated with the row index l, and finally the truth set for s is computed
possibly updating the l-th row of A.

The described optimization is particularly effective in a client/server scenario.
Consider the case of a static XML document on a server and a number of users
ready to repeatedly query the document from remote clients. The server stores
the query answer cache for all the posed queries, while each client stores the cache
for the queries posed locally. It is possible for the same user to pose similar queries
(containing common sub-queries) at different stages. Moreover, it is likely that
different users ask for similar or even for the same query. When a query is posed
on a client, first an answer for the query is searched in the local cache stored on
the client. If the answer is found, then it is returned to the user. Otherwise, the
sub-queries of the original query that do not have a cached answer are shipped
to the server and the answers for them are searched in the global cache stored
on the server. The found answers, if any, are shipped to the client user and the
client cache is updated with them. The missing answers are computed on the
server, the global cache on the server is updated with them, the answers are
shipped to the client user and finally the client cache is also updated. When
the querying is done, the query cache can be stored in secondary memory and
loaded again if the querying restarts.

An important issue involved in the described optimization concerns the cache
maintenance strategy [23]. Such a strategy specifies how to warm-up the cache,
that is, how to populate the cache in advance with queries that are likely to be
frequently asked. Moreover, it specifies when to insert new queries and to delete
old ones from the cache. We did not implement any particular cache maintenance



strategy in CacheBottomXPath. Indeed, our current goal is to compare high-level
evaluation strategies for XPath. Such an evaluation might hint how to program
an optimized full-fledged evaluator for XPath.

3 An Experimental Evaluation

This section contains the results of our experiments on both synthetic and simu-
lated real data. We implemented TopXPath, BottomXPath, and CacheBottomX-
Path in C language, taking advantage of Expat XML document parser (http://
expat.sourceforge.net). We used the Arb implementation that is available at
Christoph Koch’s website http://www.infosys.uni-sb.de/∼koch/projects/

arb. We ran all the programs in main memory. We performed our experiments
with XCheck [24], a benchmarking platform for XML query engines. We ran
XCheck on an Intel(R) Xeon(TM) CPU 3.40GHz, with 2 GB of RAM, run-
ning Debian Gnu/Linux version 2.6.16. All times are in seconds (or fraction).
Processing a query involves several steps, including parsing the document, com-
piling and processing the query, and serializing the results. The response time is
the time to perform all these steps. We mostly measured the query processing

time (the time spent for the pure execution of the query), which is the most
significant for our purposes. Because of space limitations, this section contains
only a fraction of the experiments and of the data analysis that we performed.
The complete experimental evaluation is available at the website associated to
this paper: http://www.sci.unich.it/∼francesc/pubs/xsym06. The website
includes also the source codes of the programs that we implemented for this
paper. We stress that all the experiments that we performed are based on data
(XML documents and queries) and software (query engines and data generators)
that are publicly available and hence they are completely reproducible. We tried
to devise experiments in the spirit of scientific testing as opposed to competitive
testing [25], that is, experiments that allow to draw general conclusions instead
of comparing absolute time values. In the rest of this section we will abbreviate
TopXPath as TXP, BottomXPath as BXP, and CacheBottomXPath as CBXP.

3.1 Experiments on Synthetic Data

This section contains the results of our experiments on synthetic (i.e., artificial)
data. Due to their flexibility, synthetic data are useful to uniformly test specific
capabilities of an engine by using specific benchmarks (also known as micro-
benchmarks [26]). We evaluated the performance of the XPath engines under
consideration while changing the following parameters: data size, data shape,
query length, and query type.

We performed different experiments with different goals. An experiment con-
sists of an input, and output and a goal. The experiment’s goal is what we want
to measure. The experiment’s input is a set of XML documents (data set) and
a set of XPath queries (query set). Finally, the experiment’s output is a set



of results that need to be interpreted with respect to the goal of the experi-
ment. We generated the data set with MemBeR data generator [26]. It allows
controlling different parameters for an XML document, including tree size, tree
height, and maximum node fanout. As for the queries, they were generated with
XPathGen, a random Core XPath query generator that we implemented for this
paper.4 XPathGen can generate queries with an arbitrary length and with an
arbitrary nesting degree of filters. It allows controlling the following parameters
for a query: length, axes probabilities, and filter probability. The query length
is the number of atomic steps of the form axis::test that the query contains.
Each axis has a corresponding probability of being selected during the query
generation. This allows the generation of queries that are biased towards some
of the axes. Finally, the filter probability controls the filter density in the query
(that is, the number of query filters divided by the query length). This allows
the generation of path-oriented queries (when the filter probability is low) and
filter-oriented queries (when the filter probability is high). It is worth notic-
ing that, in each generated query, each node test is * and the first step of the
query is always descendant::*. As a consequence, it is very unlikely to generate
queries with an empty result. Moreover, the intermediate and final results of the
generated queries are quite large.

We used the documents described in the table below, where the meaning of
the columns is as follows: n is the tree size (the number of tree nodes), avgd is
the average node depth (the depth of a node is the length of the unique path
for the node to the root), maxd is the maximum node depth (the height of the
tree), avgf is the average node fanout (the fanout of a node is the number of
children of the node), and maxf is the maximum node fanout.

doc n avgd maxd avgf maxf doc n avgd maxd avgf maxf
D1 200,000 7.4 8 2.8 5 D5 500,000 12 13 2 61
D2 500,000 4 4 26 35 D6 50,000 6.7 7 4 9
D3 500,000 6.8 7 6 12 D7 5,000,000 6.9 7 8 16
D4 500,000 9.5 10 3 16 D8 100,000 6.8 8 4.6 5

We performed the following experiments:

Experiment E1. With this experiment we tested the engines’ performance
while increasing the filter probability. We set the query length k = 10 and varied
the filter probability p ∈ {0, 0.25, 0.5, 0.75, 1}. Each axis is equi-probable. For
each value of p, we generated 25 queries, ran them against document D1, and
measured the overall query processing time. The results are below:

E1 p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1
TXP 19.03 22.38 23.8 25.79 27.89
BXP 16.13 16.19 16.18 16.19 16.52

CBXP 10.28 8.97 8.51 8.68 10.03
Arb 15.41 14.47 13.96 14.19 14.31

4 The source code is available at the paper website.



Interestingly, TXP shows worse performance as the query filter density increases.
This can be explained as follows. During query evaluation, TXP separates the
query into paths and filters. Paths are evaluated form the tree root, while filters
are processed with respect to the set of all tree nodes, which is more expensive.
Hence, filter-oriented queries are more difficult for TXP. Independently on the
filter probability, TXP is always the slowest while CBXP is always the fastest.
Arb and BXP are competing.

Experiment E2. With this experiment we tested the engines’ performance
while increasing the query length. We set the filter probability p = 0.25 and
varied the query length k ∈ {5, 10, 15, 20, 25}. All the axes are equi-probable.
For each value of k, we generated 25 queries, ran them against document D1,
and measured the overall query processing time. We also computed the query
scalability factors.5 The results are below (where the columns named qs contain
the query scalability factors with respect to the adjacent query lengths):

E2 k = 5 qs k = 10 qs k = 15 qs k = 20 qs k = 25
TXP 13.65 0.82 22.31 0.94 31.57 0.85 35.95 1.09 48.87
BXP 9.42 0.86 16.25 0.88 21.5 1 28.07 1.03 36.09

CBXP 4.98 0.89 8.89 1.19 12.47 1.01 16.83 1.05 22.07
Arb 14.36 0.55 15.79 1.44 34.2 25.95 1183.41 5.52 8167.5

TXP, BXP and CBXP scale up linearly when the query length is increased. On
the contrary, the performance of Arb is discontinuous, as witnessed by the query
scalability factors. It is almost irrelevant to the query length up to length 10.
However, for longer queries, the performance of Arb grows exponentially in the
query length. This can be explained as follows. For long query strings, the time
spent by Arb during the automata construction, which exponentially depends on
the query length, dominates the pure query evaluation time (the time spent to
run the automata), which is independent on the query length. CBXP shows the
best global performance. BXP comes as second, while TXP and Arb competes
up to length 15, where the performance of Arb explodes exponentially.

Experiment E3. With this experiment we tested the engines’ performance
while changing the document tree shape. We set the query length k = 5 and
the filter probability p = 0.25. All the axes are equi-probable. We generated 25
queries according to these paremeters. As for the data set, we used documents
in the sequence (D2, D3, D4, D5). All the document trees in the sequence have
the same size and vary their shape. In particular, the trees in the sequence move
from wide-and-short to narrow-and-long trees. For each document, we measured
the overall query processing time. The results are below:

5 Given a document D and two queries q1 and q2 of length l1 and l2 respectively, with
l1 < l2, let t1 be the processing time for q1 on D and t2 be the processing time for q2

on D. The query scalability factor, as defined in [27], is the ratio (l1 · t2)/(l2 · t1). If
this factor is smaller than 1 (respectively, equal to 1, bigger than 1), then the engine
scales up sub-linearly (respectively, linearly, super-linearly) when the query length
increases.



E3 h = 4 h = 7 h = 10 h = 13
TXP 28.45 31.83 34.89 36.41
BXP 19.88 22.45 24.79 25.26

CBXP 10.3 12.11 13.65 13.39
Arb 38.42 38.37 37.74 30.4

Interestingly, TXP, BXP and CBXP perform better on wide-and-short trees,
while Arb gives its best on narrow-and-long trees. Recall that the natural data
model for Arb is a binary tree (arbitrary trees are preprocessed and converted
to binary trees). This might explain why Arb is fastest on structures that are
close to binary trees. Notice that document D5, on which Arb shows the best
performance, has an average fanout of 2. As for global performance, CBXP is
still the fastest. BXP comes as second, while TXP and Arb competes, with Arb
outperforming TXP on narrow document trees.
Experiment E4. With this experiment we tested the engines’ performance
while increasing the document tree size. We set the query length k = 5 and
the filter probability p = 0.25. All the axes are equi-probable. We generated
25 queries according to these paremeters. As for the data set, we used the se-
quence (D6, D3, D7) of documents of increasing size and width. Each document
in the sequence has the same maximum depth and roughly the same average
node depth. For each document, we measured the overall query processing time.
We also computed the data scalability factors.6 The results are below (where
the columns named ds contain the data scalability factors with respect to the
adjacent document sizes):

E4 n = 50,000 ds n = 500,000 ds n = 5,000,000
TXP 3.1 0.93 28.71 0.97 278.8
BXP 2.16 0.96 20.73 0.97 202.06

CBXP 1.22 0.95 11.62 0.98 113.58
Arb 4.28 0.65 27.69 1.06 293.01

Mostly, the scalability of all engines is linear. The sub-linear behavior of
Arb in the first track depends on the time taken to build the tree automata,
which is independent on the tree size. This time is dominated by the pure query
processing time (the time to run the tree automata) in the second track. As for
global performance, CBXP is still the fastest. BXP comes as second, while TXP
and Arb are close.
Experiment E5. With this experiment we tested the engines’ performance
while changing the axes permitted in the queries. We set the query length k = 5,
the filter probability p = 0.25, and varied the set of allowed axes as follows: (a)
all the axes, (b) all the axes but following and preceding, (c) all the vertical axes
(i.e., child, parent, descendant, ancestor), (d) all the forward vertical axes (i.e.,
child and descendant). In each case, we generated 50 queries, ran them against
document D3, and measured the overall query processing time. The results are
below:

6 The data scalability factor is defined as for the query scalability factor except for
the fact that it uses the size of the XML tree instead of the length of the query.



E5 (a) (b) (c) (d)
TXP 56.33 38.8 37.1 39.86
BXP 40.48 28.35 28.77 29.12

CBXP 18.07 10.07 9.74 7.45
Arb 63.7 46.4 46.33 51.32

The message is clear: for all the engines under testing, following and preceding
axes are the most expensive ones (compare columns (a) and (b)). If we prohibit
these axes, the response time is almost the half. On the contrary, horizontal axes
following-sibling and preceding-sibling are not problematic (compare columns
(b) and (c)). The same for backward vertical axes parent and ancestor (compare
columns (c) and (d)). In any case, CBXP is still the fastest, followed by BXP,
TXP and Arb in this order.

Experiment E6. With this experiment we tested the performance of the cache
optimization introduced in CBXP. We fixed the cache size to 64. We allowed all
axes with the same probability and generated 500 queries by randomly choosing,
for each query, a value for the query length k ∈ {1, 2, . . .10} and for the filter
probability p ∈ [0, 1]. We ran the queries against document D8. The results are
illustrated in Figure 1. The left plot shows the processing times of the different
engines for all the 500 queries. The right plot sums the processing times on adja-
cent intervals of 100 queries. In both plots, from top to bottom, Arb corresponds
to the first (pink) line, TXP to the second (red) line, BXP to the third (green)
line, and CBXP to the fourth (blue) line.
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Fig. 1. The effectiveness of the cache

As for the effectiveness of the cache optimization, notice that CBXP is almost
3 times faster than BXP and, as expected, its relative performance increases as
more queries are processed. Indeed, the ratios between the processing times of
BXP and CBXP are 2.21, 2.78, 2.83, 2.89, and 3.56 on the 5 consecutive query
intervals containing 100 queries, and the ratio is 2.77 on the whole query interval.
As for global performance, CBXP is followed by BXP, TXP, and Arb in this



order. If we set to 1 the time spent by CBXP, then the time consumed by BXP
is 2.77, that of TXP is 4.02, and that of Arb is 6.3.

3.2 Experiments on Simulated Real Data

This section contains the results of our experiments on simulated real data. We
generated the documents using XMark data generator XMLGen [28]. It generates
scalable XML documents simulating an Internet auction website. We generated
three documents of increasing size, that we named SmallDoc, MedDoc, and
BigDoc. The table below contains the documents’ characteristics, where s is the
document size in MB (notice that the maximum fanout of the documents is quite
different while the average fanout and the depths are constant):

doc n s avgd maxd avgf maxf
SmallDoc 167,864 11.1 4.55 11 3.66 2,550
MedDoc 832,910 55.32 4.55 11 3.66 12,750
BigDoc 1,666,310 111.12 4.55 11 3.67 25,500

As for the query set, we used a fragment of the XPath benchmark XPath-
Mark [27]. Our benchmark consists of 11 queries, each focusing on a different axis,
with a natural interpretation with respect to XMark documents. For instance,
query Q4 asks for the American items sold in the auction and corresponds the
the XPath query /child::site/child::regions/child::*/child::item[parent::namerica
or parent::samerica]. See the paper website for the full list of queries.

The query processing time spent by each engine to execute the entire bench-
mark on the three documents is shown in following table. The columns named
ds contain the data scalability factor for the adjacent documents:

Engine SmallDoc ds MedDoc ds BigDoc
TXP 0.73 1.01 3.66 0.99 7.28
BXP 1.29 1.02 6.50 0.99 12.93

CBXP 0.72 1.00 3.58 1.00 7.18
Arb 80.84 1.01 404.92 0.93 750.08

TXP and CBXP are the fastest, followed by BXP. Arb is far behind. Hence,
in this case, TXP outperforms BXP. The situation was the opposite on synthetic
data. This behavior is interesting. While the evaluation strategy encoded in TXP
is query-driven, that is, it tries to access only those nodes that will be eventually
selected by the query, BXP, CBXP, and Arb strategies are blind in this respect
and might visit nodes that will not be part of the solution. XPathMark queries
are very selective, that is, their partial and final results are small compared to the
document tree size. On the contrary, synthetic queries have large intermediate
and final results (almost all the tree nodes are always in these sets). Hence,
TXP has a big advantage on selective queries with respect to BXP and Arb.
Nevertheless, exploiting the cache optimization, CBXP still competes with TXP
on selective queries. An additional cause for the bad performance of Arb on
this benchmark is the shape of XMark documents, which tend to have a large



maximum fanout, while the natural data model for Arb is a binary tree. Finally,
the data scalability of all engines is essentially linear.

The query processing and response times for each query in the benchmark
with respect to MedDoc are depicted in Figure 2. For each query, from left to
right, TXP corresponds to the first (red) bar, BXP to the second (green) bar,
CBXP to the third (blue) bar, and Arb to the fourth (pink) bar. The relative
performance on the other two documents is much similar.
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Fig. 2. Query processing (left) and response (right) times on MedDoc (log scale)

Moreover, the table below shows, for each engine, the minimum (min), maxi-
mum (max), average (mean), and standard deviation (deviation) of the process-
ing times of the benchmark queries with respect to MedDoc. The ratio between
the standard deviation and the mean is given in the last column (stability). This
value is an indicator of the stability of the query response times for an engine.

engine min max mean deviation stability
TXP 0.05 0.60 0.37 0.15 41%
BXP 0.40 0.95 0.53 0.17 32%

CBXP 0.06 0.77 0.32 0.20 62%
Arb 36.25 37.37 36.80 0.40 1%

The analysis per query confirms the above hypothesis about the performance
of TXP and BXP. While TXP neatly outperforms BXP on highly selective
queries like Q1, the performance of the two is comparable on queries with less
selectivity like Q2. As expected, Arb is the most stable and TXP is less stable
than BXP. CBXP is unstable due to the cold cache. We conjecture that CBXP
is very stable if the cache is warm (well populated).

Finally, the effectiveness of the cache is well illustrated in Figure 3. The
left plot refers to BXP and the right one is for CBXP. Notice how the cache
optimization smooths the peaks of BXP. This action is more effective as the
cache warms up.
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Fig. 3. The effectiveness of the cache in 3D

4 Conclusion

As mentioned in the introduction, many evaluation methods for XPath have been
proposed. However, few attempts have been made to compare the performance
of these methods. In particular, to the best of out knowledge, this is the first
paper that empirically compares top-down and bottom-up methods for XPath.
Our general conclusions are the following:

1. The cache optimization is effective and should be definitely integrated in an
optimized full-fledged XPath/XQuery evaluator. Of course, a cache mainte-
nance strategy should be adopted.

2. The top-down approach of TopXPath is more efficient than the bottom-up
approach of BottomXPath on queries with high selectivity, while the opposite
is true on poorly selective queries. Natural queries, like XPathMark ones,
tend to be quite selective.

3. The tree automata-based approach implemented in Arb does not scale up
with respect to the query length. When the query is relatively small, the
approach is efficient and in fact the response times are independent on the
query length, as claimed in [12]. However, this does not hold anymore when
the size of the query grows.
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