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Abstract. XPath is the core retrieval language of XQuery, the official
query language for XML data. We empirically compare three query eval-
uation strategies for the navigational fragment of XPath known as Core
XPath: a bottom-up algorithm based on model checking techniques for
multi-modal logic, a first top-down procedure based on a technique to
eliminate XPath filters, and a second top-down procedure that takes
advantage of the pre/post plane representation of an XML tree. We im-
plement the three methods and we benchmark the resulting XPath pro-
cessors using a fragment of XPathMark, a recently proposed benchmark
for XPath.

1 Introduction

The Extensible Markup Language (XML) [1] is a popular representation lan-
guage for semistructured data [2], which are data that do not necessarily possess
a regular schema. The XML Path Language (XPath) [3] is a simple retrieval
language for XML data. XPath in the core retrieval fragment of the XML Query
Language (XQuery) [4], the standard query language for XML.

XPath and modal logic are similar in many respects. Syntactically, the XPath
language contains navigational axes that closely resemble modal logic modalities.
Semantically, XPath queries are evaluated on XML trees, which are tree-shaped
Kripke structures whose states (nodes) are labelled with XML tags. Finally, the
query evaluation problem for XPath can be reinterpreted as a model checking
problem for multi-modal logic. XPath queries have the form q[α], where q is
called path and α is called filter. A path is a sequence of axis steps and it is
interpreted according to the following query semantics : it retrieves those nodes
that are reachable from the current one through the axes used in q. A filter is
similar to a modal logic formula and it is interpreted according to the standard
modal logic semantics : it selects the current node if it satisfies the filter α. These
two semantics are orthogonal, and they are mixed in the semantics of XPath.
This orthogonality is the cause of the exponential complexity of a naive im-
plementation of the semantics of XPath [5]. There exist two main strategies to
avoid this exponential behavior. The first translates the path q into a modal logic
formula αq and then applies modal logic semantics and methods. The second re-
duces the filter α to a query qα and then applies query semantics and tree-search



algorithms. However, it is not clear which of the two contexts, either the modal
logic context or the database one, is more appropriate for the implementation
of efficient evaluation algorithms for XPath.

In this paper, we neatly isolate two evaluation strategies for the navigational
fragment of XPath known as Core XPath [5]. The first algorithm, that we called
BottomXPath, translates a Core XPath query into a modal logic formula and
then applies model checking procedures in order to retrieve the answer set of
the original query. This algorithm works bottom-up with respect to the parse
tree of the input query: it processes the sub-queries of the input query from the
leaves of the parse tree up to the tree root. The second algorithm, that we called
TopXPath, replaces the filters present in the input query with query paths and
then applies a node retrieval procedure in order to compute the answer set of
the original query. This procedure works top-down with respect to the parse tree
of the input query: it processes the sub-queries of the input query from the root
of the parse tree down to the leaves of the tree. The XQuery formal semantics
requires that the result of an XPath expression is a sequence of document nodes
that is document sorted and duplicate free. The document order corresponds to
the total order of nodes given by a preorder visit of the nodes of an XML tree.
With reference to the time when the sorting of the XPath expression results is
performed, we specify two versions of the top-down algorithm. The first version,
that we named TopXPath1, does not care about the order of the nodes in the
intermediate node sequences and it document sorts the final result only. The
second version, that we named TopXPath2, maintains document sorted all the
intermediate node sequences and hence it does not need to sort the final result.
More importantly, it takes advantage of the hypothesis that the intermediate
results are document sorted in order to speed-up the XPath axis evaluation.
This happens by pruning the intermediate results as much as possible before
starting a new step evaluation.

A theoretical analysis of the worst-case asymptotic computational complexity
of the outlined algorithms does not help in evaluating their real-life performance:
all the procedures run in linear time with respect to the product of the size of
the XML tree and the length of the query. In order to better understand the
computational differences between the proposed strategies, which is our main
goal in this paper, we performed an experimental analysis. We implemented
the algorithms in standard C language and we used a fragment of the XPath
benchmark XPathMark [6] to assess the empirical complexity of the discussed
strategies.

This paper relates to previous work as follows. Gottlob et al. [5] propose a
bottom-up polynomial-time XPath processing algorithm for full XPath, which
runs in linear time for Core XPath. Moreover, they discuss a general mechanism
for translating the bottom-up algorithm into a top-down one. The relation be-
tween XPath query evaluation and model checking has been investigated in [7,
8], where the authors embed a fragment of Core XPath into temporal logic and
use an existing model checker to solve the query evaluation problem. The idea
of maintaining document sorted the intermediate answers in order to speed-up



the axis evaluation has been proposed in [9], a work that is mostly inspired by
the results in [10]. However, none of these papers has empirically compared the
different strategies for XPath query evaluation. This is our main task in this
work. Our bottom-up procedure BottomXPath borrows from ideas in [7], while
our first top-down algorithm TopXPath1 has been inspired by the work in [5].
Finally, our second top-down algorithm TopXPath2 is an simplified version of
the procedure proposed in [9].

The rest of the paper is as follows. In Section 2 we introduce XPath and
we relate it to modal logic. In Sections 3 and 4 we describe the bottom-up
and top-down evaluation strategies, respectively. In Section 5 we perform the
experimental analysis of the proposed algorithms and in Section 6 we show how
to rewrite the standard bottom-up model checking algorithm for modal logic
into a more efficient top-down procedure. Finally, we sum-up in Section 7.

2 XML Path languages

In this section we introduce three formalisms: the Core XPath query language,
the Core XPath calculus, and the Core XPath modal logic. The Core XPath
query language [5] is defined on a tag set Σ including the special symbol *. Let
χ be the following set of Core XPath axes: child, parent, descendant, ancestor,
descendant-or-self, ancestor-or-self, following-sibling, preceding-sibling, follow-
ing, preceding, and self. We say that child is the inverse of parent and viceversa,
descendant is the inverse of ancestor and viceversa, and so on. Notice that self
is the inverse of itself. A Core XPath query is defined by the query clause of the
following grammar (where axis ∈ χ and a ∈ Σ):

query = /path
path = step | step/path
step = axis :: a | axis :: a[filter]
filter = path | filter and filter | filter or filter | not(filter)

The Core XPath calculus is a calculus of path expressions without filters. A
Core XPath expression is defined by the exp clause of the following grammar
(where axis ∈ χ and a ∈ Σ):

exp = /path | path | exp ∩ exp | exp ∪ exp | exp | exp/exp
path = step | step/path
step = axis :: a

Both Core XPath queries and Core XPath expressions are interpreted over
XML trees representing XML documents. Since in the present work we are only
interested in the navigational power of XPath, we assume that the XML docu-
ments we work with do not contain attributes, namespaces, processing instruc-
tions, comments, and parsed character data. An XML tree is a rooted sibling-
ordered tree T = (N, R↓, R→, L), where:

– N is a set of nodes. We denote by root the root node of the tree. A tree node
represents an element in the XML document;



– R↓ is a binary relation on N such that (x, y) ∈ R↓ iff y is a child of x;
– R→ is a (functional) binary relation on N such that (x, y) ∈ R→ iff y is the

right sibling of x;
– L is a function from Σ to the power set of N such that, for a ∈ Σ \ {∗},

L(a) is the set of nodes that are labelled with tag a, and L(∗) = N .

Given an XML tree T , a query q in the Core XPath language, and a context
set C ⊆ N , the semantics of the Core XPath query language is given by a func-
tion σ(T, q, C) returning a subset of N . The semantic function σ is inductively
defined as follows:

σ(T, axis :: a, C) =
{y ∈ N | ∃x ∈ C. (x, y) ∈ RT

axis
and y ∈ L(a)}

σ(T, axis :: a[filter], C) =
{y ∈ N | y ∈ σ(T, axis :: a, C) and exists(T, filter, y)}

σ(T, path1/path2, C) = σ(T, path2, σ(T, path1, C))

σ(T, /path, C) = σ(T, path, {root})

where the predicate exists is as follows:

exists(T, path, y) iff σ(T, path, {y}) 6= ∅

exists(T, filter1 and filter2, y) iff
both exists(T, filter1, y) and exists(T, filter2, y) hold

exists(T, filter1 or filter2, y) iff
either exists(T, filter1, y) or exists(T, filter2, y) holds

exists(T, not(filter), y) iff
exists(T, filter, y) does not hold

The relation RT
axis

is a binary relation on N corresponding to the specified
axis. For instance, RT

child
= R↓ and RT

descendant
= (R↓)

+. The answer set of the
query q with respect to the tree T is equal to σ(T, q, N).

Given an XML tree T , an expression e in the Core XPath calculus, and a
context set C ⊆ N , the semantics of the Core XPath calculus is given by a
function λ(T, e, C) returning a subset of N , which is defined in terms of the
semantics function σ as follows:

λ(T, /path, C) = σ(T, path, {root})
λ(T, path, C) = σ(T, path, C)
λ(T, exp1 ∩ exp2, C) = λ(T, exp1, C) ∩ λ(T, exp2, C)
λ(T, exp1 ∪ exp2, C) = λ(T, exp1, C) ∪ λ(T, exp2, C)
λ(T, exp, C) = N \ λ(T, exp, C)
λ(T, exp1/exp2, C) = λ(T, exp2, λ(T, exp1, C))



The result set of an expression e with respect to the tree T is equal to
λ(T, e, N). It is worth mentioning that the defined semantics for the intersection,
union, and complementation operators in the Core XPath calculus differs from
the semantics of the XPath 2 [11] operators intersect, union, and except,
respectively. For instance, the query:

/descendant-or-self::*/(self::* ∩ child::*)

selects all nodes except the root, while the result of the query:

/descendant-or-self::*/(self::* intersect child::*)

is always empty.

Finally, the Core XPath modal logic is an instance of multi-modal logic in
which there is one modality for each axis in XPath. It is defined over a set of
labels Σ including the special symbols denoted by * and root. A model for Core
XPath modal logic is a relational structure corresponding to an XML tree. More
precisely, given an XML tree T = (N, R↓, R→, L), the corresponding model for
Core XPath logic is MT = (N, {RT

axis
}axis∈χ, L), where L(root) = {root} and

L(∗) = N . The semantics |= of modal formulas is as usual. We define the truth
set of a modal formula α with respect to a model M as the set of all states
x ∈ N such that M, x |= α.

In Section 3 we will show how to translate Core XPath queries into Core
XPath modal formulas, while in Section 4 we will embed Core XPath queries
into Core XPath expressions. Finally, in Section 6 we give a translation from
Core XPath modal formulas to Core XPath expressions.

3 A bottom-up evaluation strategy

In this section we give an efficient bottom-up algorithm, called BottomXPath,
to evaluate a Core XPath query. The algorithm is based on a technique that in
the logic context is known as model checking [12]. The model checking problem is
the following question: given a model M and a formula α, retrieve the truth set
of α with respect to M . A model checker is an algorithm that solves the model
checking problem.

We start by embedding Core XPath queries into Core XPath modal formu-
las. A filter expression in XPath is defined by the filter clause of the Core XPath
grammar given in Section 2. We define a translation ω from XPath filter expres-
sions into Core XPath modal formulas as follows (if filter is empty in the first
two clauses below, then the corresponding conjunct is missing):

ω(axis :: a[filter]) = 〈axis〉(a ∧ ω(filter))
ω(axis :: a[filter]/path) = 〈axis〉(a ∧ ω(filter) ∧ ω(path))
ω(filter1 and filter2) = ω(filter1) ∧ ω(filter2)
ω(filter1 or filter2) = ω(filter1) ∨ ω(filter2)
ω(not(filter)) = ¬ω(filter)



We now define a translation τ from Core XPath queries into Core XPath modal
formulas as follows (if filter is empty in the clauses below, then the corre-
sponding conjunct is missing):

τ(/axis :: a[filter]) = a ∧ ω(filter) ∧ 〈axis−1〉 root
τ(path/axis :: a[filter]) = a ∧ ω(filter) ∧ 〈axis−1〉 τ(path)

where axis−1 is the inverse of axis. Notice that the length of τ(q) is linear in
the length of q and τ(q) can be computed in linear time. We have the following:

Theorem 1. Let q be a Core XPath query and T be an XML tree. Then, the
answer set of q with respect to T is the truth set of τ(q) with respect to the
corresponding model MT .

By virtue of Theorem 1, the answer set for a Core XPath query equals to
the truth set for the corresponding Core XPath formula. Hence, we can solve
the query evaluation problem in terms of the model checking problem by using a
model checker as a query processor. BottomXPath is a bottom-up model checker
for Core XPath modal logic. It inputs an XML tree T (and not a multi-modal
model) and a Core XPath formula α and processes sub-formulas of α in increasing
length order. The algorithm is similar to a model checker for the temporal logic
CTL (see, e.g., [12]); instead of CTL temporal operators, BottomXPath checks
XPath axes. The tree T is represented as follows: each node is an object composed
of a field pre containing the order of the node in a preorder visit of the tree, a
field p containing a pointer to the parent of the node, or nil if the node is the
root, a field c containing a pointer to the first child of the node, or nil if the
node is a leaf, a field r containing a pointer to the right sibling of the node, or
nil if the node is the last sibling, a field l containing a pointer to the left sibling
of the node, or nil if the node is the first sibling, and a field tag containing the
tag of the XML element that the node represents.

BottomXPath uses a subprocedure EvalAxis. The latter inputs a tree T , and
axis axis and a formula β. For each node x ∈ N , the procedure EvalAxis labels
x with 〈axis〉β if, and only if, there exists a node y ∈ N reachable from x
trough the relation induced by axis such that y is labelled with β. EvalAxis
takes advantage of a Boolean matrix A, where rows represent formulas and
columns represent nodes, in order to label nodes with formulas that are true at
them. Finally, EvalAxis uses the auxiliary procedure LabelDescendants in order
to label the descendant nodes of a given node with a given formula. For space
reasons, we only show the implementation of descendant and ancestor axes of
EvalAxis.

1: EvalAxis(T, axis, β)
2: case

3: • . . .
4: • axis = descendant

5: for all x ∈ N do

6: if A(β, x) = 1 then



7: y ← p[x]
8: while y 6= nil and A(〈descendant〉β, y) = 0 do

9: A(〈descendant〉β, y)← 1
10: y ← p[y]
11: end while

12: end if

13: end for

14: • axis = ancestor

15: for all x ∈ N do

16: if A(β, x) = 1 and A(〈ancestor〉β, x) = 0 then

17: y ← c[x]
18: while y 6= nil do

19: LabelDescendant(〈ancestor〉β, y)
20: y ← r[y]
21: end while

22: end if

23: end for

24: end case

Let n be the size of the input tree T and k the length of the input formula
α. The procedure EvalAxis runs in O(n) and hence the cost of BottomXPath
amounts to O(k ·n). The whole bottom-up evaluation algorithm for Core XPath
is as follows:

1. translate q into τ(q);

2. run BottomXPath on T and τ(q);

3. sort, in document order, the result of BottomXPath.

The complexity of the translation step is O(k) and the call to BottomXPath
costs O(k · n). Since nodes are integers from 1 to n, we can sort the result with
a linear-time sorting algorithm like CountingSort. Hence, the overall worst-case
complexity is O(k · n).

4 A top-down evaluation strategy

In this section we give two efficient top-down algorithms, called TopXPath1 and
TopXPath2, to evaluate Core XPath queries. Both the algorithms first replace
the filters present in the input query and then apply a node retrieval procedure
in order to compute the answer set of the original query.

We first show how to get rid of filters. The following translation inputs a filter
expression f in the Core XPath query language and returns an expression in the
Core XPath calculus. It is computed in two steps. First, all the sub-filters in f of
the form [filter]/path are rewritten as [filter and path]. The resulting filter



is then processed by the following translation κ:

κ(axis :: a) = self :: a/axis−1 :: ∗
κ(axis :: a[filter]) = κ(filter)/κ(axis :: a)
κ(step/path) = κ(path)/κ(step)
κ(filter1 and filter2) = κ(filter1) ∩ κ(filter2)
κ(filter1 or filter2) = κ(filter1) ∪ κ(filter2)

κ(not(filter)) = κ(filter)

Let us call ι the above defined 2-step translation. We now define a translation
υ from Core XPath queries into Core XPath expressions:

υ(/axis :: a[filter]) = /axis :: a ∩
/descendant-or-self::*/ι(filter)

υ(path/axis :: a[filter]) = υ(path)/axis :: a ∩
/descendant-or-self::*/ι(filter)

Notice that the length of υ(q) is linear in the length of q and υ(q) can be
computed in linear time. We have the following:

Theorem 2. Let q be a Core XPath query and T be an XML tree. Then, the
answer set of q with respect to T is the result set of υ(q) with respect to T .

4.1 A first top-down algorithm

In this section we propose a first top-down strategy, called TopXPath1, to eval-
uate Core XPath queries. With respect to the tree data structure described in
Section 3, we assume here that an additional field called count is added to the
object representation of each node of the tree. The new field is used to record
whether the node has been visited or not during a step evaluation. TopXPath1
does not care about the order of the nodes in the intermediate context sets and
it sorts the final result only.

TopXPath1 inputs an XML tree T , a Core XPath expression e, and a context
set C. It evaluates the expression e in a top-down fashion as defined by its seman-
tics. It uses a procedure ProcessStep1 to evaluate the XPath axis steps. In par-
ticular, the procedure ProcessStep1(T, axis, a, C) elaborates the step axis :: a
on the tree T with context set C, according to the XPath semantics. In order
avoid walking on the same node twice, the procedure checks the count field of
the node’s object. This field is initialized to 0 for each node when TopXPath1
starts. The global variable k is also initialized to 0 and it is incremented by one
at each step evaluation performed with ProcessStep1. When a node is visited
during a step evaluation, its count field is assigned to the value contained in k.
Hence, during the k-th step evaluation, all nodes that has been already visited
in that step evaluation have their count field set to k, while the count field of
the unexplored nodes is less than k. This method avoids the costly resetting of
the count field at each step evaluation. Finally, ProcessStep1 uses an auxiliary
procedure RetrieveDescendants to retrieve the descendant nodes of a given node



that are labelled with a given tag. We show the implementation of descendant
and ancestor axes of ProcessStep1.

1: ProcessStep1(T, axis, a, C)
2: k ← k + 1
3: R← ∅
4: case

5: • . . .
6: • axis = descendant

7: for x ∈ C do

8: if count[x] < k then

9: count[x]← k
10: y ← c[x]
11: while y 6= nil do

12: R← R ∪ RetrieveDescendants(y, a)
13: y ← r[y]
14: end while

15: end if

16: end for

17: • axis = ancestor

18: for x ∈ C do

19: y ← p[x]
20: while y 6= nil and count[y] < k do

21: count[y]← k
22: if a = ∗ or tag[y] = a then

23: R← R ∪ {y}
24: end if

25: y ← p[y]
26: end while

27: end for

28: end case

Let n be the size of the input tree T and k the length of the input formula
α. The procedure ProcessStep1 costs O(n) and hence the evaluation algorithm
TopXPath1 runs in O(k · n). The whole top-down evaluation algorithm for Core
XPath is as follows:

1. translate q into υ(q);

2. run TopXPath1 on T and υ(q);

3. sort, in document order, the result of TopXPath1.

The complexity of the translation step is O(k) and the call to TopXPath1
costs O(k · n). The sorting can be performed in linear time. Hence, the overall
worst-case complexity is O(k · n).



4.2 A second top-down algorithm

In this section we propose a second top-down strategy, called TopXPath2, to
evaluate Core XPath queries. With respect to the tree data structure described
in Section 3, we assume here that two additional fields are added to the object
representation of each node of the tree: a field called count that, as in TopX-
Path1, is used to record whether the node has been visited or not during a step
evaluation, and a field called post containing the order of the node in a postorder
visit of the tree.

TopXPath2 evaluates a Core XPath expression in a top-down fashion as
done by TopXPath1. It uses a sub-procedure ProcessStep2 in order to process
the XPath axis steps, which in turn uses an auxiliary procedure Descendant to
retrieve the descendant nodes of a given node that are labelled with a given
tag. Moreover, it uses the following auxiliary list procedures, where C and L
are double-linked lists and x is a node: NewList(), that initializes a new list,
DelFirst(C), that deletes and returns the first element of C, DelLast(C), that
deletes and returns the last element of C, AddAfter(C, x), that appends x to C,
AddListAfter(C, L), that appends L to C, AddBefore(C, x), that adds x in front
of C, AddListBefore(C, L), that adds L in front of C, First(C) that returns the
first element of C, Last(C) that returns the last element of C. All these proce-
dures can be implemented in constant time. TopXPath2 differs from TopXPath1
since it maintains document sorted the intermediate context sets. Moreover, it
exploits the sorted contexts to speed-up the XPath axis evaluation by pruning
the context sets as much as possible before starting each step evaluation. By
maintaining both the preorder and the postorder ranks for each node, TopX-
Path2 implicitly represents an XML tree as a bi-dimensional plane, called the
pre/post plane in [10]. Each node x is encoded by the point (pre(x), post(x)). A
nice feature of this encoding is that, for each node x, the top-right (respectively,
bottom-left) quadrant of x contains all the following (respectively, preceding)
nodes of x, and the bottom-right (respectively, top-left) quadrant of x contains
all the descendant (respectively, ancestor) nodes of x. Hence, given two arbitrary
nodes x and y, we can check in constant time the relative position of y with re-
spect to x. As an example, consider the cases of following and preceding axes.
By exploiting the pre/post plane properties, the context set can always be re-
duced to a singleton (see the code below). Finally, TopXpath2 takes advantage,
when necessary, of the counting technique described in Section 4.1 to avoid the
exploration of the same tree zones twice. For space reasons, we only show the
implementation of following and preceding axes of ProcessStep2. Notice that,
if the input context set is document sorted, then the results of following and
preceding axes are document sorted as well.

1: ProcessStep2(T, axis, a, C)
2: k ← k + 1
3: R← ∅
4: case

5: • . . .



6: • axis = following

7: L← NewList()
8: if C 6= ∅ then

9: x← DelFirst(C)
10: while post[First(C)] < post[x] do

11: x← DelFirst(C)
12: end while

13: while x 6= nil do

14: y ← r[x]
15: while y 6= nil do

16: AddListAfter(L, Descendants(y, a))
17: y ← r[y]
18: end while

19: x← p[x]
20: end while

21: end if

22: return L
23: • axis = preceding

24: L← NewList()
25: x← Last(C)
26: while x 6= nil do

27: M ← NewList()
28: y ← l[x]
29: while y 6= nil do

30: AddListAfter(M, Descendants(y, a))
31: y ← l[y]
32: end while

33: AddListBefore(L, M)
34: x← p[x]
35: end while

36: return L
37: end case

Let n be the size of the input tree T and k the length of the input formula α.
ProcessStep2 runs in O(n) and TopXPath2 in O(k · n). In this case, the whole
top-down evaluation algorithm for Core XPath is as follows:

1. translate q into υ(q);

2. run TopXPath2 on T and υ(q).

The complexity of the translation step is O(k) and the call to TopXPath2
costs O(k ·n). Since TopXPath2 maintains sorted the intermediate context sets,
the result of TopXPath2 is already sorted. Hence, the overall worst-case com-
plexity is O(k · n).



5 Experimental analysis

The three proposed algorithms have the same asymptotic worst-case complex-
ity. In order to better understand the computational differences between the
proposed strategies, we performed an experimental analysis. We implemented
the algorithms in standard C language and we used a fragment of the XPath
benchmark XPathMark [6] to assess the empirical complexity of the discussed
strategies. In this section, we briefly report about this analysis. The source code
(released under the GNU General Public License), the executable programs (for
Gnu/Linux systems), and additional experimental data and plots (including a
comparison with XQuery processor Saxon [13], which is outside of the scope of
this paper) are available at the website http://www.zimuel.it/xpath.

Our experiments were run on an AMD Sempron 1.7 GHz, with 1 GB RAM,
running Debian Gnu/Linux version 2.6.10. All the times are response CPU times
in seconds. We ran tests using a variety of XML documents and XPath queries.
The XML documents were generated using the XML benchmarking program
XMark [14]. We used a document series of 11 XML documents corresponding to
the following sizes in MB: 0.116, 0.212, 0.468, 0.909, 1.891, 3.751, 7.303, 15.044,
29.887, 59.489, 116.517. As for the benchmark queries, we took advantage of a
fragment of the XPath benchmark XPathMark [6]. The benchmark queries we
used are the following (notice that Q7, Q8, Q9, and Q10 are new queries not
belonging to XPathMark):

Q1 The keywords in annotations of closed auctions

/child::site/child::closed auctions/child::closed auction

/child::annotation/child::description/child::parlist

/child::listitem/child::text/child::keyword

Q2 All the keywords

/descendant::keyword

Q3 The keywords in a paragraph item

/descendant-or-self::listitem/descendant-or-self::keyword

Q4 The (either North or South) American items

/child::site/child::regions/child::*/child::item

[parent::namerica or parent::samerica]

Q5 The paragraph items containing a keyword

/descendant::keyword/ancestor::listitem

Q6 The mail containing a keyword

/descendant::keyword/ancestor-or-self::mail

Q7 The last bidder of all open auctions

/child::site/child::open auctions/child::open auction
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Fig. 1. Query response time (averaged over the benchmark set)

/child::bidder[not(following-sibling::bidder)]

Q8 The first bidder of all open auctions

/child::site/child::open auctions/child::open auction

/child::bidder[not(preceding-sibling::bidder)]

Q9 The last item of the document

/child::site/child::regions/child::*

/child::item[not(following::item)]

Q10 The first item of the document

/child::site/child::regions/child::*

/child::item[not(preceding::item)]

Q11 People having an address and either a phone or a homepage

/child::site/child::people/child::person

[child::address and (child::phone or child::homepage)]

Q12 People having no homepage

/child::site/child::people/child::person[not(child::homepage)]

In order to perform the evaluation, we applied the benchmarking methodol-
ogy described in [6]. In particular, we used the following measures:

– given a query q and a document d, the query response time is the time
taken by an algorithm to give the answer for the query q on the document
d including all the phases of the elaboration (e.g., parsing of the document,
processing of the query, serialization of the results).

– Given a query q and a document d, the query response speed is defined as
the size of the document d divided by the response time for query q and
document d. The measure unit is, for instance, MB/sec.

– Given a query q and two documents d1 and d2, where the size of d2 is bigger
than the size of d1, the data scalability factor is defined as v1/v2, where v1
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Fig. 2. Query response speed (averaged over the document series)

is the query response speed of q on d1 and v2 is the query response speed of
q on d2.

We say that the data scalability is sub-linear whenever the data scalability
factor is lower than 1, it is super-linear whenever the data scalability factor is
higher then 1, and it is linear whenever the data scalability factor is equal to
1. Usually, sub-linear and linear scalability indicate that the query processor
performs well when the size of the database is increased.

Figure 1 depicts, for each document in the series, the average query response
time for the entire benchmark (left plot for small files, right plot for bigger
ones), while Figure 2 illustrates, for each query in the benchmark, the average
query response speed for the entire document series. Finally, Figure 3 plots, for
each document in the series, the average data scalability factors for the entire
benchmark.

In the following, we comment the outcomes of our experimental evaluation:

– The response times of the two top-down strategies are very close, with TopX-
Path2 slightly faster than TopXPath1. This tells us that the approach of
maintaining the context sequences document sorted at any time does not
pay off in terms of response time.

– The top-down strategy is more efficient than the bottom-up one (about 30%
faster, and the difference increases as the size of the data increases). The gap
is bigger in the case of queries that do not need to explore big portions of
the document tree in order to compute the query answer (like Q1 and Q4),
while the response times of the two strategies are similar in the case of queries
that need to visit the entire document (like Q2) . This phenomenon can be
explained as follows: the bottom-up algorithm visits the entire document
tree for each sub-query of the main query, while the top-down procedure
explores only the tree zones that are relevant for the evaluation of the query.

– All the three XPath processors scale-up linearly with respect to the size of
the XML data. This confirms the linear-time complexity of the implemented
algorithms.
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Fig. 3. Data scalability factors (averaged over the benchmark set)

6 Back to modal logic

What do modal logicians get out of this paper at the end of the day? Con-
sider the following translation from Core XPath modal formulas to Core XPath
expressions (where a is an atomic proposition different from root)3:

χ(root) = child :: ∗
χ(a) = /descendant− or− self :: a
χ(〈axis〉α) = χ(α)/axis−1 :: ∗
χ(α ∧ β) = χ(α) ∩ χ(β)
χ(α ∨ β) = χ(α) ∪ χ(β)

χ(¬α) = χ(α)

We have the following:

Theorem 3. Let α be a Core XPath modal formula and T be an XML tree.
Then, the truth set of α with respect to the corresponding model MT is the result
set of χ(α) with respect to T .

The above theorem gives us the following top-down algorithm to solve the
model checking problem for Core XPath modal logic: translate a modal formula
α into the corresponding expression χ(α) and then use a top-down strategy as
described in Section 4 to retrieve the result set of χ(α). This paper empirically

3 A translation from Core XPath modal formulas to Core XPath queries with filters
is given in [15].



proves that a top-down evaluation strategy is less expensive than a bottom-up
one, because it browses only the relevant parts of the underlying model and not
more. However, model checking algorithms for modal and temporal logics typi-
cally are bottom-up procedures [12]. The top-down query evaluation strategies
described in Section 4 can be turned into an efficient top-down model checking
procedure for Core XPath modal logic.

7 Conclusion

We implemented three evaluation strategies for the navigational fragment of
XPath and we benchmarked the resulting XPath processors using a fragment of
XPathMark, a recently proposed benchmark for XPath. The main outcomes of
our investigation are (i) a top-down evaluation approach is faster than a bottom-
up one, and (ii) the pre/post plane optimizations for XPath query evaluation
are as efficient as tree-search algorithms over the tree modeling the XML docu-
ment. We also gave a top-down model checker for Core XPath modal logic which
empirically performs better than the standard bottom-up one.

It is worth pointing out that a bottom-up strategy outputs much more infor-
mation than a top-down strategy. In particular, the bottom-up model checking-
based procedure computes the answer set for each sub-query of the input query,
while the top-down routine retrieves only those nodes belonging to the answer
of the input query. This feature of the bottom-up approach may in fact be-
come a benefit whenever the answer set for the sub-queries of the input query
is relevant. Consider for instance a query processor that is queried many times
possibly by different users. It is not unlikely that similar queries are posed at
different times. In such a case, a bottom-up strategy may easily reuse the results
computed for common sub-queries (in a dynamic programming fashion), while a
top-down strategy must re-compute the result for each new query from scratch.
As a future work, we would like to compare the performace of the bottom-up
and top-down approaches in a multi-query environment.
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